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ABSTRACT

Simultaneous Localization and Mapping (SLAM) is a relatively widespread
problem that needs to be solved to make a robot fully autonomous. Given the noisy
measurement and process, the system architecture should find the accurate position of
the robot and construct the map concurrently. Determining the inaccurate position of
the robot can makes an improper construction of the map and vice versa. Linguistically,
the main objective of addressing the SLAM problem lies in estimating the mean of the
robot pose and feature-based map and their covariances. According to this brief
description, it is not surprising that the use of the Extended Kalman Filter (EKF) and
Smooth Variable Structure Filter (SVSF) have been significantly solving the problem
of Simultaneous Localization and Mapping (SLAM).

The implementation requires an accurate system model and known prior
knowledge. However, the theoretical perspective illustrates no precise system model
due to some considerations, such as avoidance of physic laws. Besides that, the prior
knowledge of noise statistics is usually unknown or partially known in the real
application. Therefore, by manually defining them as the conventional and common
way, both the performance of the SVSF and EKF possess a high risk of degradation.
The inaccuracy of the modeling system might enlarge the estimation error. The
uncertainty caused by the unpredictable and random error might affect the characteristic
statistical change, which undoubtedly leads to the filter divergence condition.

Hence, the traditional form of both filtering strategies should be initially enhanced.
The significant contribution of this research is to equip EKF and SVSF with an ability
to estimate the noise statistic of the process and measurement and its corresponding
covariances. This strategy is well-known as an adaptive filtering method based on a
batch estimation of parameters. It is a popular method to tune the gain by offline-
calculating the unknown parameter. Henceforth, they are termed as Adaptive Extended

Kalman Filter and Adaptive Smooth Variable Structure Filter (AEKF and ASVSF). As

viii
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an effort to accomplish these goals, in the first case, the conventional EKF and SVSF
are respectively derived by referring to the principle of maximum a posterior and
weighted exponent. Due to the absence of estimated values from the original form, the
EKF and SVSF are modified based on the strategy of a one-step smoothing method.
This process allows the system to have the smoothed parameter that can be utilized to
proceed with the offline-derivation process. Afterward, the suboptimal values of all
unknown parameters can be calculated. However, due to the presence of a multistep
smoothing term, the adaptive process needs to be simplified. Therefore, the inaccuracy
might occur because of a non-positive definite matrix to the covariances corresponding
to either process or measurement. For this reason, the use of the divergence suppression
method is also involved. Besides that, both the suboptimal estimate values are also
estimated using the unbiased estimation method. In the second case, the conventional
EKF and SVSF are assisted by a different approach to the previous one, named
Maximum A Likelihood Estimator and Expectation-Maximization.

In this design, the adaptive forms are generated by assuming that the updated
covariance form of EKF and SVSF are the same. However, the mathematical derivation
chokes temporarily due to the presence of estimated values which is unavailable from
the original formulation of the EKF or SVSF. Therefore, aiming to cover this lack of
estimate values, the EKF and SVSF are modified based on a one-step smoothing
method. Furthermore, to prevent the divergence caused by covariances' complexity, the
unbiased estimation and innovation covariance estimation is involved. Hence, the
proposed methods can recursively update the noise statistic under time integration. All
the adjusted parameters based on the previous calculation make the filtering learn and
improve without changing their characteristics. Furthermore, the proposed methods are
applied to solve the SLAM problem of a wheeled mobile robot. Henceforth, both are
named as AEKF-SLLAM and ASVSF-SLAM algorithm.

The proposed method's verification and validation are conducted in two different

cases, the synthetic-based simulation and real-experiment. The synthetic-based
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simulation considers that the robot moves from the initial position to the goal position
by executing wheel rotation ticks per second. The user gives these values, but they are
assumed to be always followed by the small additive noise. Sequentially, it measures
all distinguishable features by presenting the range and bearing values to the system.
Similarly, the measurement values are considered to be noisy. Therefore, the synthetic-
based simulation assumes the reference path when the robot is moved using a motion
model without any perturbation. The map is supposed to be known by placing some
features around the robot path. The motion model and measurement model are designed
by adopting the differential steering system and direct point-based observation,
respectively. Meanwhile, the Victoria Park dataset recorded by Nebot, 2009, at the
Australian Centre for Field Robotics is used for the real-experiment. This popular
dataset is commonly used to verify the adaption or invention to a 2D online feature-
based SLAM algorithm. A path through an area of around 197m x 93m is described in
this dataset. This sequence consists of 7247 frames, captured over a total period of 26
minutes, along a 4 km trajectory. The data set includes steering and rear-axis wheel
sensor readings (odometry) and laser range finder readings (one scan of 360 degrees
per second) along with GPS data. A tree detector feature is given for the laser range data
along with the dataset. Invariably, they have a wide distance to each other and can be
isolated or classified with standard data association techniques. However, spurious data
is found in some instances and must be deleted. All of the tests are conducted on a 2.3
GHz Dual-Core Intel Core i5, 8 GB 2133 MHz LPDDR3. The purpose of this
experiment is to evaluate our approach's consistency and to examine the computational
complexity. According to these simulations, all algorithms' accuracy and consistency
are analyzed/compared in terms of average RMSE and NEES under the Monte Carlo
Simulation. The comparison shows that the proposed method, ASVSF-SLAM

algorithm, is better than the conventional method.

Keywords: Simultaneous Localization and Mapping, Feature, Laser Scanner, MLE,

MAP, Adaptive EKF-SLAM, Adaptive SVSF-SLAM.
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Chapter I Introduction

This chapter consists of the background, problem statement, hypothesis, related
works, contribution and novelty, scope and limitation of study, content, and

organization of the dissertation.

1.1 Background

The mobile robot has been widely applied in many sectors!! %), Therefore, it is not
surprising to hear that it has been attracting much attention from many researchers. In
the case of autonomous applications, the mobile robot should be able to execute all the
given tasks without any!®-!!'' human interference. In order to achieve this provision, the
robot should be able to initially perform the fundamental task of robot navigation, which

10], [12], [12]+

is localization[®) [17], Localization is the problem of determining the pose of

a robot relative to the given map of the environment and establishing the
correspondence between the local robot and map system coordinatel!®). There exist
many limitations affecting this task, such as the unstructured surface, avoidance of

physic laws, sensor limitation, and other unpredictable factors causing the uncertainty*!

(19231 Consequently, the accuracy of navigation might be decreased. Thus, the robot

should first improve the information related to its pose, which can be done by gathering

all the vital information. It can be established by utilizing the exteroceptive sensor, such

15],[24

as a camera, laser scanner, and sonarl 1. Continuously, all the perceived information

about its surrounding are used for building the global environment map that can be

12], [18], [25]+

further utilized for localizing itself in the environment! (7] Tn the localization,

the robot usually utilizes the proprioceptive sensors such as wheel encoder, gyroscope-

based orientation sensor, and accelerometer!®) [281-31

1. The precise and accuracy will be
dependent on the location of the current robot. Now, these tasks sound complicated.

The robot should collect the coordinate of all the features as well as knowing its posel!®)
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[18]. 3211341 Nevertheless, it has been famously noticed as the popular problem of a

mobile robot named as Simultaneous Localization and Mapping (SLAM) problem(!} (4}

351 15). [81-{101. [13). [14]. [17]. 1191 The SLAM framework based on the stochastic map

approach was firstly introduced by Smith and Cheesman in 1986[7) [34]: [3¢],

As an effort to acquire a reliable map, the robot should be having an accurate
estimation of its state. Meanwhile, the accurate estimation state can only be satisfied
when an accurate estimation map is available. Therefore, the perspective of

probabilistic and calculus has been considered as a core of the estimation-based SLAM

37+

strategies!?) B7-41 Among all the various approaches, Extended Kalman Filter (EKF)

1, [46

is the most popular and widely used® [22}- [28]. [32]. [461-51 There also existed many

similar recursive filtering methods used for SLAM, that includes the relatively newest
form of filtering, named as Smooth Variable Structure Filter (SVSF)[! [41: 1221 [39], [43], [44],
[52-551 As the highlight in SLAM for large-scale application, the computation
complexity is the main issue. This complexity is remarkably growing up under the time

integration while the new landmark is detected and added to the state vector(!%- 12 [18].

32 37 Consequently, the number of both the state vector and their corresponding

[4

covariances will also be grown!*- 8l Furthermore, to satisfy the effectiveness and

accuracy, the mentioned estimators require the precise and accurate system model and

known noise statisticl20 [291- [45]. [48]. [56}-

[66] However, there almost no exists an accurate
model. It is due to the system’s uncertainty are characteristically unpredictable and
unobservable. Additionally, the prior knowledge of noise statistics is only predictable
and suffers from the accurateness. Because of these reasons, there have been existing
some approaches. It adopts the principle of batch estimation, which equipping the
traditional form with the time-varying noise statistic. Similarly, this research proposes
the adaptive filtering used for the robust estimator, SVSF. It aims to replace the role of
EKF for the SLAM algorithm. Unlike the tradition, the SVSF is completed with the

recursive noise statistic of the process and measurement as well as their corresponding

covariances. In which it gives a novelty and innovation among the existing adaptive
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filter. As a way to present significant validation, it is also compared with an Adaptive
EKF. Thus, adaptive EKF is also designed using the same strategy. It is noted that, this
strategy aims to improve EKF and SVSF to precisely predict and update the state vector
and its corresponding covariance. In this case, all the small additive noise will
characteristically be recursive and responsive, referring to the current system.

The process of reaching an adaptive filter from the traditional form required some
approaches. Initially, both EKF and SVSF were modified by using the principle of one-

22), [41], [46], [58], [61]. [63). [671-169] Tt aims to provide the multiple-step

step smoothing point!
of estimate values, originally ungiven by the traditional forms, that might occur while
the mathematical derivation is being stated. Consequentially, the involvement of

56]-[58], [65], [69]

different estimator such as maximum a posteriort*: , maximum likelihood

261, 59611, 1701 711 expectation-maximization®) [60) [64]. [70H721 = and

estimation®} [
weighted exponent®®) [6%1, Besides that, the different methods were also attached to
remove the possible effect that might be causing the divergence. The first method is

651, [73

the divergence suppression method*) ! 1 used to reupdate the predicted covariance

of the state vector. And the second one is the innovation covariance estimation!®}: (20} [21].

[561. 1591 731, 1741 ysed to prevent the existence of non-positive definite matrices of the
process and measurement covariance. As the predecessor of these additions, the
unbiased estimation®}- 58 73] wag also completed to the estimation process. It aims to
generate more robust estimate values of the process and measurement noises and their
corresponding covariances. The process of achieving Adaptive EKF and SVSF is
separately introduced. To validate the effectiveness, they are directly implemented to
solve the online SLAM problem of a mobile robot. Henceforth, they are termed as
AEKF-SLAM and ASVSF-SLAM algorithm!*- 8], They are realistically simulated,
referring to the feature-based mapping and landmark-based localization processes. As
an effort to analyze their effects, both of them are compared to the conventional

strategies in the form of Root Mean Square Error (RMSE)!) [301.[441. [431. 1761 o f Estimated

Path Coordinate (EPC) and Estimated Map Coordinate (EMC). According to these
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comparative results, the presence of adaptive strategy has been significantly improving

the traditional method of EKF and SVSF.

1.2 Problem Statement and Hypothesis

By solving Simultaneous Localization and Mapping, the robot might have the
ability to fully and autonomously accomplish the navigation task without human
interference. This process requires the robot to locate the current position and build the
map based on all the acquired information of the sensor data in each iteration of
movement. Besides performing two different tasks simultaneously, the difficulty of
solving this problem lies in the existence of the unavoidable noise that always follows
the measurement. Furthermore, the irregular surface where the robot is operated might
also affect the system's stability. Thus, the filtering method is commonly used against
these causes of uncertainty by conducting the estimation process. Using filtering for
SLAM is intended to approximate the robot coordinate and acquire the coordinate of
the features on the specific environment, given the control command and real
measurement.  After that, these types of coordinates are then gathered as the
representation of the robot trajectory and feature-based map in the global map
representation. Shortly, the main tasks of solving SLAM problems can be divided into
two parts: localization and Mapping, then combined with being operated at the same
time.

Localization

The problem of self-locating the pose of the robot along its navigation. Commonly,
in order to perform this task, the system learn the knowledge of the environment, the
control command, the observation and command history, initial state, and the motion
process at the environment. Mathematically it can be described by using the following

probability distribution.
p(xr] 21k, Utk M) (1.1)

where k is the time discrete index, Tk is the robot state vector, Z1:k is the
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measurement data given by the exteroceptive sensor, laser scanner, and U1:k is the
control command sent to the robot and m represents the acquired information of all the
tracked position.
Mapping

The mapping problem lies on the way to determine the information representing all
the pose of the features spread on the environment. These tasks can be done by
approximating all the coordinate of the features based on the previous robot position
and the sensor reading, laser scanner. Analytically it can be represented by the following
probability distribution.

p(m|r1k, 21:1) (1.2)

where Mk refers to the information of the position of the feature in the
environment.
Simultaneous Localization and Mapping

The SLAM is the task of determining the consistent map of all the features
available on the environment and simultaneously conducting the localization. It can be
done by constructing the map and updating the robot's location to the global map
representation based on the previous data of measurement and control command. The
following probability distribution can represent this analogy.

Pk, m| 210k, Unik) (1.3)

Simultaneous Localization and Mapping is challenging when the information of
the previous robot position and the data of the measurement are noisy.
Adaptive Filtering Problem
Adaptive filtering is the main crucial problem that needs to be concerned before
utilizing any conventional filtering method, such as the Extended Kalman Filter and
Smooth Variable Structure Filter. The main objective of this problem is to determine
how to obtain the noise statistic of the process and measurement recursively. Many
researchers have stated that the optimality of any filtering method is significantly

affected by the noise statistic. The mathematical derivation and estimation process are
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required which aims to generate time-varying noise statistic and their corresponding
covariances. There are some recommended approaches before using EKF or SVSF,
such as Multiple Model Estimation and Gain-Tuning Adaptive Filter. The urgency of
this problem is to optimize the ability of filtering method used for solving 2D feature-

based Simultaneous Localization and Mapping.

1.3 Related Works

As an effort to improve the filtering method, the batch estimation of parameter has
been strongly recommended and traditionally conducted before applying the optimal
filtering method. A. H. Mohamed and K. P. Schwarz Department introduced
innovation-based adaptive Kalman Filter which is obtained by adopting the maximum
a likelihood estimation to estimate the covariances corresponding to the process and
measurement noise via the available information in the filter innovation sequencel>”). It
is continuously improved with the presences of the fuzzy-innovation based adaptive
filter, in which the measurement covariance matrix is regarded as adjustable parameter
and can be tuned using fuzzy logic controller. This method is introduced by R Woo et.
al 3], Different from these methods, W Gao et. al. proposed the adaptive Kalman Filter
by adopting the principle of Maximum A Posterior and smoothing it!®1.

Besides that, the batch estimation of parameter is also used for nonlinear version
of Kalman Filter. Y Huang et. al. proposed the adaptive Extended Kalman Filter by
estimating the noise covariance matrices based on online expectation-maximization
approach!”?l, Similarly, S Akhlaghi et. al. proposed adaptive extended Kalman Filter by
adopting the residual and innovation-based strategies. It aims to estimate the absence
of recursive covariance noise statistic of the process and measurement from the
conventional EKF?°], Additional to that, K H Kim et. al. also proposed an adaptive two-
stage extended Kalman filter by using the adaptive fading EKF. It is used to estimate
the covariance matrices of the noise statistic of the process and measurement. As a note,

that the fading EKF can be achieved by adopting the principle of innovation covariance
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estimation!”’]. Once, it has been considered as effective way to improve EKEF, it is
continuously used as the base. K A Myers et. al. introduced an adaptive Kalman Filter
based on the state and observation noise samples generated in the Kalman filter
algorithm to estimate the first- and second order moment of the noise processes!’8l.
However, the use of EKF is limited nowadays because of some factors. Therefore,
the adaptation of EKF has been famously presented such as Cubature Kalman Filter
and Unscented Kalman Filter. As the traditional method, they are not originally
completed with an ability to update the noise statistic. For this reason, their adaptive
formulations are introduced by J He et. al. and D Chen et. al. proposed the hybrid
adaptive filter of Unscented Kalman Filter (UKF) by combining the Maximum A
Posterior and Maximum Likelihood Creation to estimate the noise covariance for the
state and measurement!®®), F Yu et. al. proposed the adaptive form of Cubature Kalman
Filter to estimate the noise statistic and their corresponding covariance matrices by

[14]. [501. [791 'Y Shi et. al. proposed an

referring to Sage-Husa noise statistic estimator!!3}
adaptive unscented Kalman Filter to recursively estimate the system process noise
variance using the modified Sage-Husa noise statistic Estimator!®l. Z Gao et. al.
proposed Adaptively Random Weighted Cubature Kalman Filter by involving the
random weighting theory to estimate system noise statistics and predicted state and
measurement together with their associated covariance!®!l. ] H Wang et. al. introduced
an adaptive UKF used for estimating the noise statistic and their corresponding
covariance by using the principle of modified Sage-Husa noise statistic estimator!!4l,
B Gao et. al. School proposed an adaptive UKF for Nonlinear State Estimation via
Maximum Likelihood Principle to estimate the covariance matrix of the process noise
and measurement noise adaptively. The approach behind this achievement is estimating
the noise statistic via the available new information in the filter innovation sequencel!.
The used method is the same method used by Mohamed?'.

Furthermore, the application of filtering method is also implemented to solve the

feature-based SLAM algorithm. It is intended and proposed to replace the role of
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conventional algorithm, EKF-SLAM algorithm. P Yuzhen et. al. used the adaptive EKF
based on modified Sage-Husa noise statistic estimator to resolve the problem of the
error accumulation in the process of mobile robot localization!®?l. Besides that, J H
Wang et. al. implemented an adaptive UKF for solving SLAM problem of Unmanned
Underwater Vehicle!'* and F Yu et. al. utilized the adaptive Cubature Kalman Filter for
solving SLAM problem of mobile robot!!3]. As the alternative of optimal filtering, the
robust filtering, SVSF, has been also applied for this type of SLAM problem. D Fethi
et. al. utilized the New Form of Smooth Variable Structure Filter completed by Time-
Varying Covariance Update and smoothing boundary layers for solving SLAM problem
of Unmanned Vehicle!'). D Fethi et. al. also utilized the Smooth Variable Structure
Filter with a fixed smoothing boundary layer for solving SLAM problem of Unmanned
Vehicle?!. Y Liu et. al. used the Smooth Variable Structure Filter as the FastSLAM
algorithm core used for Unmanned Air Vehicle®). Although, the SVSF has been
significantly giving much improvement to the feature-based SLAM, its implementation
does not concern to noise adaptation. For this reason, the adaptive filtering method is
proposed to improve SVSF before utilizing it as the SLAM algorithm. In this
dissertation, the batch estimation of the unknown parameter is applied based on MLE
and MAP. However, there is a lack of estimate values that cannot be adopted from the
original formulation of SVSF. Thus, as the innovation in this research, the SVSF is
smoothed using a one-step smoothing point. Besides that, the estimation process is
proceeded by involving the unbiased estimation to guarantee that the estimated noise
statistics are unbiased from the actual estimate values. By using these strategies, the

novelty of this research is emphasized.

1.4 Research Contribution and Novelty

The primary research lies in the filtering strategy area, indicated by the presence of
SVSF development. Recently, SVSF has been considered as the robust filtering for state

estimation since Gadsden introduced the complete form in 2011. Like the other



FIEREA AR S

traditional estimator, it can estimate the posterior state and covariance regarding the
corresponding gain. It is very robust and stable compare to the existed filtering method
for modeling uncertainties and errors. Nevertheless, the usage of SVSF requires initial
predefinition to the characteristic of the prior noise statistic interfering with the process
and measurement system. The absence of a time-varying variable in the traditional
SVSF might degrade the robustness and stability of SVSF in case of a real application
or even realistically simulation. Therefore, the main contribution of this research is to
introduce a new form called adaptive SVSF. It is done by firstly estimating the original
formulation with some different methods and strategies. The following flowchart can
illustrate the process of generating an adaptive filter for SVSF.

Furthermore, all the concepts seen in Figure 1.1 were also adopted to achieve
the adaptive form of traditional EKF. The main reason is to present a more comparative
method to validate the robustness, stability, and accuracy of Adaptive SVSF. Since the
product of this research can be broken down into the field of state and parameter
estimation, so that, this methodology can be applied and implemented on the case of
target tracking, simultaneous localization and mapping, fault detection and diagnosis
problem. These contributions are significant to develop the existence of SVSF and EKF
with all their capabilities. To summaries the methods above, the following statement is

presented.

Measurement State
Residual Estimate
Filtering Process

Revised
Gain
Y Y
Estimate Residual Estimate
and —> Cqmputg <4— Disturbance
. . Gain Matrix :
Noise Covariance Covariance

Figure 1.1 Adaptive Concept
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Primary Contribution and Innovation

Instead of only using EKF and its adaptive formulation, this dissertation
emphasizes the use of a robust filtering method that is adopted from the sliding mode
concept, SVSF. According to the characteristic, the formulation of SVSF's gain and its
updated covariance is different from EKF. Therefore, even involving the traditional
method such as MLE or MAP, it still highlights the novelty in this dissertation.
Concurrently, this dissertation presents an innovation that considers the complex
formulation of covariance as the base for the whole estimation process.

Besides that, the derivation process is conducted to find the covariance matrices of
noise statistic and its mean formulation in which it is different from the usual approach.
Furthermore, unlike the traditional, SVSF is smoothed to provide the lack of multiple-
step estimates values given by Maximum A Posterior or Maximum Likelihood
Estimation derivation. Moreover, the unbiased estimation is also involved aiming to re-
check and re-ensure that the suboptimal solution has the zero-bias. In the end, to prevent
the occurrence of divergence conditions that might be caused by nonpositive definite
matrices, the use of innovation covariance estimation is involved. It is used to replace
the covariance of innovation error. It aims to improve the optimality of the proposed
method more.

Secondary Contribution and Innovation

The former method commonly used as 2D feature-based algorithm is EKF.
Therefore, by replacing it with SVSF, it gives innovation and novelty alternatively.
Additionally, the use of SVSF is also enhanced by applying the adaptive filtering
method, named as a batch estimation of the parameter. Thus, it gives a significant
contribution to the new formulation of SVSF. The presence of adaptive SVSF is used
to solve the online SLAM problem of a mobile robot with the feature-based mapping

and landmark-based localization.

10
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Scope and Limitation

The recursive estimation process for SVSF is conducted by assuming that there is
no lack of prior measurement. The saturation function is on a steady-state condition
when the estimated values are inside the boundary layer width. Furthermore, instead of
using the simplified formulation of update covariance as introduced by Joseph,
designing adaptive SVSF refers to the compound formulation. It aims to keep the
accuracy of uncertainty about the state. The validation of the proposed method is taken
by comparing it with the other filtering method to solve the feature-based SLAM
problem. The simulation is conducted by initially assuming that this robot moves
around the environment based on the control command sent by the user. When it moves,
this robot acquires the position of all the features. This analogy is considered as a
reference. Continuously, to provide a realistic simulation, the motion and measurement
of the robot are perturbated with randomly generated small noise. Therefore, it is stated
that the main role of the proposed method is to estimate the robot path and feature
coordinate, simultaneously, given the inaccurate control command and noisy
measurement. Accordingly, by knowing the truth and estimated values, the validation

and comparison are conducted in terms of Root Mean Square Error.

1.5 Organization of The Dissertation

The rest part of this dissertation is organized as follows. Chapter II reviews the
primary literature related to Gaussian State Estimation, including State Estimation for
Solving the Stochastic Dynamic Problem, Kalman Filter, Extended Kalman Filter,
Variable Structure Filter, and Its Extended Version, and Smooth Variable Structure Filter.
This chapter also presents a Literature Review on Localization, Mapping, and
Simultaneous Localization and Mapping Problem, including General Problem of
Feature 2D SLAM, Motion Model, Measurement Model, Feature Extraction using
Derivative of Recorded Scan, Landmark Measurement, Localization using EKEF,

Simultaneous Localization and Mapping using EKF. Chapter I1I presents the process of

11
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designing adaptive EKF and adaptive SVSF. The mathematical derivation behind this
process is also presented. Moreover, the Adaptive EKF and SVSF are separately
validated by implementing them to solve the online SLAM problem. In which, the
discussion is presented in Chapter IV. The experiment, result, and discussion will be

presented in Chapter V. Chapter VI presents the conclusion.

12
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Chapter II Literature Review on Gaussian State

Estimation and Feature-Based SLAM

The state estimation plays a significant role in solving the problem of Simultaneous
Localization and Mapping. This chapter presents the popular filtering method for
solving the SLAM-like dynamic system. It presents the Bayesian Framework, Kalman
Filter, the most popular linearization-based filtering, the Extended Kalman Filter, and
Smooth Variable Structure Filter basics. This chapter also presents the general
definition of a feature-based 2D SLAM problem applied for a wheeled mobile robot.
Some fundamental prerequisites commonly used to solve this problem are also
presented sequentially. It includes the motion model, direct point-based observation,

and inverse point-based observation.

2.1 Introduction

The primary role of estimation is to extract the actual state from the system's noisy
measurement or observation and form a state estimate. This extracting aims to minimize
the estimation error caused the uncertainty, which often interfered with the processing
system and measurement. There almost no exact manner to against and remove this
uncertainty except the probability-based approaches. Thus, the probability is considered
the central core behind the estimation theory used for mathematically modeling the
uncertainty!!8],

The enormous contribution of estimation theory is presenting how to obtain an
accurate state from the noisy data. The development of estimation strategies has
involved a large number of contributors from different fields listed as follows. Girolamo
Cardan (1501 - 1576) was considered the first contributor who presents probability's

systematic treatment®¥. Moreover, after some development, Jacob Bernoulli (1654-

1705) introduced the first rigorous proof of the Law of Large Numbers for repeated

13
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independent trials, which is now popularly known as Bernoulli Trials. Thomas Bayes
(1702-1761) derived the famous rule for the statistical inference that provides the
Bayesian Estimation method!*#. Carl Friedrich Gauss (1777-1855) introduced the
optimal estimate from the noisy data, named as a method of least squares, in 179584,
Continued, Andrei Markov ( 1856—1922) developed a theory of random process, which
usually now termed as Markov process as well as Markov Chain!®l. Furthermore,
Andrei N. Kolmogorov (1903-1987) reestablished the foundation of probability theory
on measure theory, which became the basis for integration theory and the mathematical

basis of probability and random process®*.

2.2 State Estimation for Solving Stochastic Dynamic System

State Estimation is the task of extracting the state variables from the noisy
measurement. The main objective of state estimation is to minimize the estimation error.
The estimation error is the difference between the estimated values and the real values
projected as the output on the particular space. The limitation of the measurement
process and unpredictable noises cause the measurement to suffer from exactness. Thus,
the framework needs to be stated to construct the state estimation of a stochastic
dynamic system. And of the popular one might be adopted from the first-order Markov-
Process that can be expressed as follows

{xk = [ (Th—1, wr, wr—1) 2.2.1)
2k = h(zg, vg)

where £ is discrete time index, Tk is the representation of the state vector and 2k
is measurement model. Meanwhile, Wk—1 and Vk are the representation of small
additive noises concerning the process and measurement, respectively. It is assumed
that both additive noises are characteristically mutually independent and white.
Moreover, the second assumption is both the transition model f(-) and measurement
model P(-) are known as well as the control command Uk is given. The filtering

problem is regarded to calculate the estimated values of the state vector recursively.

14
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Zk—1. Fundamentally, two common methods can be used to achieve this formulation:

by either adopting the Bayesian Paradigm or the Gaussian distribution.
2.2.1 State Estimation from the side of Bayesian Paradigms

By using the Bayesian paradigm, allows us to calculate the conditional a posterior
state of the probability function Zk of given the set of measurements Zx. Analytically,
it can be modeled as P(k|Zk) where Zk = {21,22,.., %k}, Continuously, it is
initially assumed that the conditional probability of its prior state x—1 given the prior
measurement 2kx—1 is denoted as p(mk,ﬂzk,l)’ then the prediction and update step
can be conducted. According to [44], the prediction step of Bayesian perception can be

done by using the Chapman-Kolmogorov equation.
p(rr|Zp—1) = /p($k|$k—1)p(illk\zk—1)d$k (2.2.1.1)

where the state transition modeled P(Zk|Tr-1) can be calculated by referring to
Equation (2.2.1). Note that the initial state p(xo0) is known as satisfying p(zo0|20).
Then by using the Bayesian Rule as the basis, the update step of this process can be
analytically calculated as follows.

p(zklzr)p(er| Zp—1)
p(2k|Zk—1)

p(xk|Zk) = (2.2.1.2)

where p(zk|Zk—1) is the normalizing constant which can be calculated as follows
perlZis) = [ pleslanplon Zi)do s 22.13)

Once the likelihood function p(2k|Zk) is obtained by referring to the Equation (2.2.1),
then Equation (2.2.1.3) can be calculated. As a note, that above calculation are modeled
by referring to the following assumptions
1. The state transition satisfies the first order Markov Process, 1i.e.
(k| Xk, Z;) = p (xk|TK—1) , where Xi = {zo,21,..., 21}
2. The measurement 1is conditionally independent given the state,

(26| Xk, Zi—1) = p(2k|zk)

15
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The main purpose of the filtering is to construct the posterior Probability
Density Function (PDF) accurately based on all the available information. Equation
(2.2.1.1) — (2.2.1.3) present the base scheme of recursive state estimation. However, it
cannot cover some scenarios because it only contains the conceptional solution. For this

reason, the role of Gaussian PDF might be used.
2.2.2 State Estimation from the side of Gaussian Distribution of The State

The recursive equation of the estimated posterior stated can be analytically solved
by taking consideration that the linear state transition and measurement model are

431144 Tt is commonly used to simplify

subjected to addictive noises with Gaussian PDF!
the complexity of the calculation of the Bayesian Paradigm. The assumption provides
the normal distribution to both the prior state p(2k|Zk-1) and the likelihood
p(2k|Zk—1) , in which it will return Gaussian distribution for the posterior PDF
P(xk|Zk). Under this assumption, the Bayesian filter is reformulated to as Gaussian
Filter by converting the recursive computation of the former Bayesian filter to algebraic
computations of the first moment (mean) and the second moment (covariance) of the
existing conditional, which both are followed by the time and measurement update as
can be presented as follows

Time Update

This step generates the prior state estimate “klk—1 and the prior error state covariance
Pk by applying the expectation operator. This step can be analytically formulated
as follows

Thip—1 = E{f(xrp—1,up—1)[Zr—1}

R X (2.2.2.1)
= / flxe—1,up—1)N(Tr; Tp—1jp—1, Pe—1jp—1)dTr

where NV(---,...) represents the Gaussian PDF.
Measurement Update

This step produces a posteriori state estimate and its updated covariances by

16
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assuming that the error can be approximated as Gaussian since the error in the prior
measurement is a zero-mean white stochastic process(#3) [44):[321.[85] By this assumption,
the likelihood density can be restated as the initial process of measurement update as

shown below.
(2| Zk—1) = N(2k; Zkjp—15 Poz kk—1) (2.2.2.2)

where the prior measurement is stated as follows
Rz
Zkik—1 =/ h(mkauk)xN(xM£k|k—1»Pk\k—1)dxka (2.2.2.3)
Meanwhile, its covariance and cross-covariances are respectively described by the
following equations.
R"e
P k-1 = / Wy, up) BT (2h, w )2 N (28; Brjp—1, Prjg—1)dor — Zk—125, 1 + Ba

(2.2.2.4)

R
Pyokjh—1 = / b (2h, wk) TN (T Epp—15 Prjr—1 )dak — xk\kflflakq
(2.2.2.5)

Then by using the new measurement <2k, the concept of the Gaussian filter leads

the initial calculation of the posterior state and its covariances
p(wx|Zx) = N(2p; ik Prix) (2.2.2.6)
and by respectively calculating the gain and error representation as shown below
Ky = Ppz gje—1F2z kjk—1 (2.2.2.7)
€z klk—1 = 2k — Zk|k—1 (2.2.2.8)
Hence, both the posteriori updated state and its updated covariance can be

respectively formulated as follows.

Tk = Trik—1 + Kres g1 (2.2.2.9)
Pk = Py 1 KiPos i1 Kb (2.2.2.10)

Up to this point, it can be simply declared that the formulation Gaussian Filter

above can reduce the complexity of Kalman Filter in the case of both the linear state
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and measurement, which are subjected to an additive zero-mean white Gaussian noise.
However, the main basis of the Gaussian filter is concentrated on how to calculate the
Gaussian weighted integrals that are all formulated as nonlinear functions with

301, [421-[44]. [46]. [831-187] ' Therefore, in some cases of a nonlinear system

Gaussian densities!
with non-Gaussian noise, a particular technique is required to solve the estimation
problem. This technique leads to such linearization or approximation of probability
density function, which is initially regarded to obtain the exact analytical solution due

to this limitation. The most common Gaussian method for solving recursive nonlinear

estimation problems through linearization is Extended Kalman Filter!33): [41)- [46]. [86]. [88]-

[90]

2.3 Kalman Filter

Kalman Filter (KF) was invented by Rudolph Emil Kalman in the 1950s®3) P11,
The significance of KF has been statistically proven to give the optimal solution to the
linear system model, under the assumption of the noise is modeled as Gaussian.
Generally, there are two versions of KF, which are continuous-time version and
discrete-time domain. The continuous-time version was developed by Kalman and

441, 1851 However, the discrete-time estimation

Bucy, known as Kalman-Bucy filter!
problems are the only ones concerned in this dissertation.

The KF requires the dynamic system model, known control input, and
measurement followed by the noise. Based on these requirements, the KF can provide
the optimal state estimates: by predicting the state referring to the initial state,
calculating the covariance of the predicted state, obtaining the weighted average of the
predicted variable and measured values, and presenting new state as well as its
corresponding covariance for next iteration.

All these processes can be classified into two stages, which are termed as prediction

and update. In the prediction step, the KF utilizes the previous state vector, control input,

small additive noise assumed to interfere with the process, and their corresponding
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predetermined matrices. Meanwhile, in the update step, the KF utilizes and combines

the predicted state or termed the prior state estimate and the current measurement to

obtain the new estimate state commonly named as posterior state estimate [92].
Initially, to formulate KF, the form represented by Equation (2.1) should be

linearized. It is assumed that the linearized models are respectively given as follows

rp = f (Th—1, Up, Wk—1)
{ 2% = h (zx, i) (2.3.1)
Then by referring to [83] the formulation of the recursive KF can be summarized.

First, the prediction stage of KF can be summarized as follows
Tpp—1 = ATp_1)p—1 + Bug_1 (2.3.2)
Pyjj—1 = A1 AT + Qy (2.3.3)
where the x represents the state vector, A and B are known matrices
corresponding to the state and control command, respectively. Meanwhile, &k refers
to the error covariance of the small additive noise of the process. Since, both the
predicted state and measurement are computed, then the update stage of KF can be done
as follows
Firstly, the innovation (error measurement) and its covariances are respectively

calculated as follows
€2 klk—1 = 2k — Zk|k—1 (2.3.4)
Skik—1 = CPy—1C" + Ry, (2.3.5)

where #klk—1 = CThk—1+ V5 and Ry represents the error covariance
corresponding to the small additive noise of the measurement. Once, Equation (2.3.4)
and Equation (2.3.5) are calculated, the corresponding gain of KF can be computed as

follows
Ky = Py 1CTS, (2.3.6)

Finally, the updated state and its error covariance are determined by referring to

the following equations, respectively.
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gk = Tpjp—1 + Kres k-1 (2.3.7)

Pyr = Pyji—1 K Spjp—1 KL (2.3.8)

Kalman Filter is known well as one of the optimal state estimation methods. It is
also regarded as the popular Gaussian filtering used for solving the linear system, which
is the successor of the Wiener-Kolmogorov filter (WF)44: 851 The main key of the
optimal filtering method is minimizing the estimation error instead of designing the
fixed filtering to generate the acceptable performance for a wide range of modeled
uncertainties caused by the large dynamic. There have been existed many documented

831, 11, 1931. 4] The optimality of KF is strongly

KF references with detail derivation38)1
dependent on stability and robustness!®l. The KF assumes that the system model is
known and linear, the system and measurement noises are white, and the states have
initial conditions with known means and variances!'% [38]: [44. 93] However, these
assumptions are always rare in the real application, resulting in suboptimal state
estimates or even being unstablel®). Besides that, the convergence condition is strongly

dependent on the precise of computer and the complexity of matrix inversion®3,

2.4 Extended Kalman Filter

According to the description above, it is impossible to construct and obtain the
analytical solution to such nonlinear state transition and non-Gaussian noise. It leads to
the condition that the predicted distribution P(@k|Zk-1) will not be computed
precisely. Accordingly, a particular approach is required to be involved in solving this
kind of estimation problem. There are two popular approaches, namely, the
approximation of PDF and linearization. By linearizing the nonlinear system, the
similar stages existed on Kalman Filter can be alternatively used. The most popular
linearization-based filtering method is the Extended Kalman Filter, which is the
extension of the Kalman Filter.

The EKF approximates the nonlinear filtering problem by assuming that the

distribution is Gaussian, and the direct numerical approximation in a descriptive sense
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is used to calculate a posteriori distribution. Thus, EKF is classified into the local
approach-based nonlinear filtering instead of the global approach one. Unlike, KF the
use of EKF is initially started by approximating the nonlinearity of the state or

431, [441, 1861, 1961 Tt is proceeded to updating

measurement model at the operating point!
both the state and its corresponding covariance by first calculating corrective gain
respect the diversity between the actual measurement and predicted measurement.
According tol?} [8] 1441 [46]. 147, [53]. [72]. [83]. 1891, 971" the process of EKF for both the
prediction and correction stage are summarized as follows.
Prediction Stage

Like KF, the prediction stage of EKF assumes that the initial state value and the
control command are available. The mean and covariance noise of the process and

measurement are also predetermined. Then, the prediction stage of EKF starts by

calculating the prior state vector by the following equation.
Thik—1 = f(Tr_1jh—1,Uk) + Wi—1 (2.4.1)
Once, the predicted state estimate is computed, then its corresponding covariance
can be sequentially calculated as follows
Pyji—1 = FrPy_1p—1 FY + Qr— (2.4.2)
where Fr is the Jacobian matrix of the state transition function J(-). It is
calculated by taking partial derivative of function f() with respect to the state at time
k — 1. Meanwhile, (k-1 refers to the error covariance matrix of the small additive
noise following the process. All variables found in this stage are used to conduct the
second stage of EKF, which is the update stage.
Update Stage
The update stage is intended to produce the updated estimate values of the state
vector and its corresponding covariance. It is done by concerning the corrective gain.
In which, the innovation (error measurement) is firstly calculated before determining

this gain value.

€z klk—1 = 2k — Zk|k—1 (2.4.3)
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where the predicted measurement is calculated by utilizing the predicted state estimated

Tk|lk—1 as follows
Zilk—1 = h(Trjp—1) + vk (2.4.4)
where h(.) refers to the model of measurement function and Vx is the small additive

noise of the measurement. Once, the innovation is calculated, then its covariance can
also be computed. Mathematically it can be calculated as follows
Sk = Hy Py Hi + Ry (2.4.5)

where Rk is the representation of the error covariance relative to the measurement
noise. The calculation of obtaining the covariance of the innovation error utilize the
predicted covariance of the state estimate. Hence, it can be declared that there is a
connection between the prediction and update stage of EKF. Up to this point, the
corrective gain of EKF can be calculated, which characteristically corrects the estimated
value to minimize the innovation error computed above. Mathematically, it can be
expressed as follows.

Ky = Py HS™! (2.4.6)
Then, respectively the updated state estimate and its corresponding covariance can
be computed below.
Tpik = Tplp—1 + Krls kp—1 (2.4.7)
Py = Prje—1(I — Ky Hy) (2.4.8)
Note that the Jacobian matrices of the state transition and measurement function

are described

of
Fk: — % ‘:i;kfl\kfl,ukil (2.4.9)
oh

2.5 Variable Structure Filter

As discussed earlier that Kalman filtering-type methods critically requires both the
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accurate system model and white modeled noise. Unfortunately, they are rarely found
in the real application due to some effects, such as the model structure, level and noise
distribution, the availability of the initial condition, and the avoidance and reduction of
the physical parameters. Therefore, to cover these limitations, the existence of a robust
filtering method is introduced. Some methods can be classified into these types, such
as robust Kalman, H-infinity, and Variable Structure Filtering-types(#4}: (45} [85]. [86]. [89],
And one of them is presented and discussed in this thesis, namely Smooth Variable
Structure Filter, which is one of the successor filtering methods of VSF. The presence
of SVSF was intended as an effort to improve the stability and robustness of KF. It was
introduced by using the close principle of Variable Structure Filter.

As a leading introduction to SVSF, a brief discussion of the Variable Structure
Filter is presented. VSF strongly refers to Variable Structure Control theory, which
guarantees the stability given some bounded parametric uncertainty. And the Sliding
Mode Control is the most popular form derived from the main principle of VSC. It can
solve the estimation problem by utilizing a discontinuous switching plane along some
desired trajectory. This plane is referred to as a sliding surface used to minimize the
estimation error by keeping the state values along this surface. Although the VSF uses
the discontinuous component for correcting the estimate as same as SMC, it has a
different formulation. It similarly uses the principle of prediction and correction stage
to KF. To perform the VSF, the VSF requires the known knowledge at the time k-1 and
calculates the predicted state (prior state estimate) Zk|k-1, Like Kalman Filtering-type,
it obtains the updated state Tkl by firstly utilizing the presence of system
measurement. Similarly, to KF, using the linearized form of Equation (2.2.1), which is
also expressed by Equation (2.3.1), the summary of the VSF form is presented as

fOHOWSBOL [43], [44], [53], [85], [89], [90].

Prediction Stage

This stage is used to determine the prior state estimate by using all the available

23



FIEREA AR S

information including the transition matrix A, corresponding control matrix B, the
initial state estimate © k—1lk—1 and the control command U“k—1
Tpip—1 = AZp_1p—1 + Buk—1 (2.5.1)
Since the predicted estimate is obtained, then the innovation (error measurement) can
also be calculated as shown below.
€z klk—1 = 2k — Zk|k—1 (2.5.2)
where the priori measurement kb1 s computed using the following equation.
Zrjk—1 = Oy (2.5.3)

Up to this point, there is no difference between the prediction stage of VSF and KF.

Update Stage
This stage is used to determine the updated state estimate by calculating the gain
of VSF from all the obtained variables in the prediction stage and the following

variables.

~

3

J

(2.5.4)

A

£ —
d—19¢

where £ = CAC™ and é = C'AgJ’ Meanwhile, 6 = CB and 5 =CB. Then,

the gain of VSF can be calculated follows

KXSF = AiléJr ("éA‘abs{,}/‘é‘abs‘ez,k\kfl‘abs + ’Ailé+gmazzk‘abs + [‘é+|abs+
’Ailé+’abs(gmar + I)] Vmam + |Ailé+gmazuk—1‘abs + “Ail‘abs + ‘A*léﬂr

61m(u(:|abs} Wmacc} |abs o Sign(ez,k\k’fl>)
(2.5.5)

where o represents the Schur product, . is representing the error, max refers to

the upper bound, I is the identity matrix, and £, 5’, and & represent the upper bound

on modeling uncertainties of &, C, and 6, respectively[*2 [43. [46]. [85]. [86] Meanwhile,

sign<ez,k|k*1) is described as follows
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€z1,k|k—1
: (2.5.6)
€z klk—1
Generally, Equation (2.5.6) satisfies the following function.

+1 € klk—1 >0
sign (e kjk—1) = 0 if e;pp—1=0 (2.5.7)
—1 € klk—1 <0

Due to the complexity of gain calculation resulting in high-frequency switching, the
performance of VSF is limited with the existence of chattering to the estimation states.
As an effort to reduce the effect of this chattering, the presence of smoothing boundary
layer ¥ was introduced. It is intended to obtain the smooth function and ensure the
robustness by maintaining the sign function when it is outside of this boundary.
Analytically, the saturation function sat(.) replacing the sign function can be

expressed as follows

. €2 .klk—1
sign(e. ge_1) = sat(—=HEL) (2.5.8)
(05
in which the saturation function is defined as

T O O et
sat(HEEEL) = § Clel Gy ] < Sl <) (2:5.9)

Y ] Cai klh—1 i}

Vi —

large enough size to overcome the behavior of dynamic change. Thus, it leads to the
existence of a relationship between the magnitude of VSF gain and the handling
uncertainty level. Additionally, the smoothing boundary layer width should also be
sufficiently large, so it can embrace the maximum reached values of the gain of VSF
when conducting the estimation process. The smaller boundary layer width represents
accuracy to the estimate with fewer uncertainties available. This analogy leads to the

following function.
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According to Equation (2.5.10), it can be declared that the boundary layer width is
a representative function associated with the presence of uncertainties in the estimation
process. It is also apparent to say that the corrective gain of VSF can be calculated since
both the upper bound and the level of noise are well-defined. And although the gain
provides robustness and stability to the estimation strategy, VSF yields a non-optimal
estimation result!®: [441- [761. [851. 871 Tt also cannot be applied for such a nonlinear system.

For this reason, the nonlinear form of VSF is required.

2.6 Extended Variable Structure Filter

As an effort to improve the capability of VSF for such a nonlinear system, an
Extended Variable Structure Filter was introduced. Like KF and EKF, the estimation
process of EVSF assumes that the nonlinear system and its measurements are

respectively defined as follows

xp = f(Xp—1, Uk, Wp—1)
{ o 2.6.1)

Conceptually, there is no much difference to VSF that the form of EVSF is referred
to as the predictor-corrector principle. Therefore, there are also different stages, the
prediction and update stage.

Prediction Stage

The predicted state estimate “klk—1 can be obtained by utilizing the previous
knowledge of the initial state ¥k—1/k—1 and control command ¥k—1. Furthermore, the
small additive noise to the process Wr-1 and measurement Yk and their corresponding
covariances should predetermined. Analytically, the prediction stage of EVSF can be

expressed as follows
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Tppo—1 = [(Zp—1jp—1, Ur—1) (2.6.2)
where f(.) refers to the state transition function. Similar to EKF form, once the

predicted state Tklk—1 is obtained, the error measurement can also be computed.

Mathematically, it can be expressed as follows
€z klk—1 = 2k — Zk|k—1 (2.6.3)
where the prior measurement is calculated using the following equation.
Zrlk—1 = M Tpjp—1) (2.6.4)
Update Stage

Similar to the VSF, the core of update process lies on the corrective gain. It is

calculated as follows

KkEVSF = F+H+Hmaxabs|Fma,xabs{’yH:Laxabskz,kk1|abs + |Fy;iag|abs
‘f(zkflaukfl - f(:i‘k:flukflw‘abs + Wmaz + |H$am’absvmaﬂc:| }O

sign (e k|k—1)

(2.6.5)

where [’ and H are the Jacobian Matrices as the representative linearized form of the

process and measurement. They are respectively calculated as follows

of
F, =21 1; 2.6.
k &C\ K 1lk gy (2.6.6)
oh
Hy = . - (2.6.7)
xXr

Then by utilizing the corrective gain, Equation (2.6.5), the updated state of EVSF

can be computed below.

Tk = Tppo1 + KFVEF (2.6.8)

Although, conceptually, the gain of EVSF is similar to the gain of VSF. They also
have the same disadvantages and advantages. The only thing that makes them different

is that due to linearization, the EVSF can be applied for a nonlinear system. However,
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it is frequently conducted when calculating the correcting gain, in which the

linearization sufficiently increases the numerical result.

2.7 Smooth Variable Structure Filter

A similar limitation exists on EKF can also be met on EVSF. Accordingly, the
revised form was introduced in 2011 to improve their performance, namely Smooth
Variable Structure Filter®>), Tt is a relatively new predictor-corrector estimator that can
be applied for both linear and nonlinear systems. The SVSF is formulated based on the
Sliding Mode Conceptl!} [221- 391 1451 [331. 551 which utilizes the switching gain to

converge the estimates to within a boundary of the actual state values.
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Figure 2.1 Smooth Variable Structure Filtering Concept

Assuming that the nonlinear system is modelled as follows

zp = [(Th—1,ur) + Wk—1
{ YA N @2.7.1)

According to [85], the SVSF can be summarized as follows.

Prediction Stage
This stage determines the prior state estimate given the state vector's initial

information, the control command, and all the relevant variables representing the noise
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statistic and their covariances. The first step of this process can be seen as follows
k-1 = f(Tr—1)h—1,Uk—1) (2.7.2)
where f(.) represents the state transition function. Once, the predicted state value

Thik-1 s calculated, the corresponding measurement can be obtained as follows
Zijk—1 = M Tpjp—1) (2.7.3)
Then, by calculating the difference between the actual/real measurement 2 and the
predicted measurement éklkfl, the innovation error €z.klk—1 is calculated as
€z klk—1 = 2k — Zk|k—1 (2.7.4)
Update Stage
. o . . SVSE .
This process utilizes the corrective gain & for calculating the updated or

posteriori state estimate k[, The gain calculation is expressed as follows

ezﬂk—l)

7

KSVSF - H+ (’ez,k|k—1‘abs + 7’€z7k_1\k—1‘abs) ° Sat( (275)

where o and .T represents the Schur product of matrix multiplication and pseudo
inverse of matrix, respectively. Meanwhile, ¥ refers to the smoothing boundary layer
width and 7 refers to the memory or convergence rate satisfying 0 < i <1,
According to Equation (2.7.5), the initial error measurement €z,k—1lk—1 is required.
Therefore, the posterior error measurement should be defined when the noise statistic
and their corresponding covariance, the boundary layer width, and convergence rate are
predetermined. This scenario leads to the process of SVSF requires to present the
posterior error measurement for the next step of estimation. It can be concerned once
the updated state estimate is obtained, where the posteriori state estimate is calculated

by using the corrective gain as
Tk = Thjp—1 + K1§VSF€z,k\k—1 (2.7.6)
The corresponding measurement of the update state Tk is firstly calculated as
Zrie = h(Zxr) (2.7.7)

then the posteriori error measurement is computed as follows
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€2 klk = 2k — Zk|k (2.7.8)
Up to this point, the process of SVSF can be iteratively repeated. The stability and

convergence of the existence subspace of SVSF can be evaluated by
€2 k|k]abs < |€k—1]k—1]abs (2.7.9)

where |€[abs represents the absolute values of the error measurement which can also

be calculated as |€labs = €.sign(e)

The revised SVSF

The SVSF is a relatively new estimator. And all the previously discussed process
is the first form SVSF, which is not completed with any ability to update the state
vector's covariance recursively. Accordingly, Gadsden introduced the use of covariance
to tune corrective gain in the presence of uncertainties. Besides that, the presence of

time-varying boundary layer width was also introduced. These additions also give a

: . . SVSF ,
correction to the corresponding gain K . Referring to!*3} 44} 531 once the

predicted state estimate Thik-1 s obtained, the prediction stage of SVSF is added with

its corresponding covariance as
Pyg—1=FPy 11 FT 4+ Qr1 (2.7.10)

where it can be calculated using the initially predefined covariance Pr—1jk-1, 1t is not
that this initial covariance represents the uncertainty about the initial state k-1/k—1,
Meanwhile, k-1 refers to the covariance of additive noise to the process and F refers

to the Jacobian matrix of state transition function J/ (), which is calculated as follows

p=

‘ikfl k—1:Uk—1
Ox k=1

(2.7.11)

by utilizing the predicted covariance Prjk—1 in Equation (2.7.10), the calculation of

the covariance of innovation error can be conducted as follows
Sy = HPyy_1H" + Ry (2.7.12)

where Rk refers to the covariance matrix relative to small additive noise of the

measurement. Meanwhile, H is the Jacobian matrix of measurement function
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calculated as follows

oh

H=">

9 |21k (2.7.13)

The covariance of error measurement Sk is then used to calculated the time-varying

boundary layer width ¥. This process is analytically expressed by the equation below
——1 -1
= (A HPkk_1HT5k1> (2.7.14)

This boundary layer width is also used to design a saturation function, which is

expressed as follows

N +1 S > 1
e _
sat 1}}’“ D)= EET i < ST (2.7.15)
! —1 ezk,l/l)é_l S _1

Meanwhile, A is defined as the function expressed below.
A= <|€z,k|k—1 ‘abs + 7|6z,k—1|k—1 ‘abs) (2716)

It is note that, 7 refers to the convergence rate. Then the revised gain of SVSF can be

calculated as follows

= € lk— —
KJVSE :H*{Awat( ’“J 1)} = ' (2.7.17)

By using new gain, the updated state estimate is calculated using Equation (2.7.6).
Accordingly, the update covariance of this state can be also calculated as

Pk|k — (I o KkSVSFH)PMk,l(I o KEVSFH)T + K;SVSFRkKEVSFT (2718)

Where = indicate the diagonal term of matrix.

2.8 The Feature-Based SLAM

Simultaneous Localization and Mapping is a relatively new problem of the mobile
robot [2], [10], [26], [37]. It allows mobile robots to autonomously navigate in an

environment without prior knowledge of the map without access to independent
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position information. As the name, the objective of the SLAM problem is to localize all
the tracked pose of the robot and simultaneously to construct the map based on the
observation through the exteroceptive sensor, such as laser scanner!!l. Although the 3D
type of laser scanner is available nowadays, the 2D one is commonly used to solve the
feature-based SLAM problem. By knowing the pose of the robot and landmarks, a
mobile robot could quickly and safely navigate to reach the goal position from a specific
position. It is also the reason that SLAM is considered as the essential concerning
problem before performing the path planning or path tracking. It is due to the easiness
of making a proper decision after solving it. However, once the SLAM requires the
approach to know where the robot is and address how the environment looks, the
problem becomes chicken-like. The robot requires an accurate map of its environment
when it localizes the position. In order to determine the precise map, a mobile robot
needs to know the location in the environment.

By this analogy, observation becomes a crucial part that needs to be carefully
considered. As the common device interfered with some factors, such as dependence
on the power supply, tolerance of the accuracy, and outer interference, thus the
observation is followed by noise. The real-world sensor gives noisy values that make
the measurement of either the robot pose and the environment subject to uncertainty
and bias. Therefore, as the initial way to solve the SLAM problem, it is often
characterized and modeled as the Gaussian distribution, which allows the user to jointly
parameterize both the robot pose and environment using the multivariate-type of the
Gaussian distributions. Accordingly, the main problem of SLAM problem can be solved
by adopting the probabilistic manner to estimate the mean and covariance, which are
mean as the expectation of both parameters and covariance represents the uncertainty

due to the unpredictable and random noise following the system and measurement.

2.8.1 Motion Model

As mentioned above, the main objective of solving the SLAM problem lies in the
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estimation process against the uncertainty caused by the noisy measurement and system.
Therefore, it is not surprising that the role of filtering strategy is often involved. Before
implementing the SLAM-based filtering strategy, the essential consideration of the
motion model is firstly concerned! 81, Tt is approached to apply the state transition
process relative to the presence of the control command. The model comprises the
probability of feature state with uncertainty caused by the random noise following the
input and the situation relative to the environment where the robot is operated. A motion
model is an approach used to know the pose of the robot given the previous pose and
the velocity command. Behind the motion model's probabilistic configuration, the
kinematic configuration is commonly concerned as an easy way to model the mobile
robot. Kinematicl®!l is a strategy to observe the robot motion by taking off some
consideration, such as the mass, force, and interference that might affect the robot. It is
only assumed that there is no much factor of the cause of motion. However, to
realistically used the kinematic for motion model, some elements lie on the move and
turn the action of the robot are considered. It aims to satisfy the possible situation when
the odometer gives noisy information. Mathematically, it can be expressed by the
conditional probability P (TRk|TR k-1, Uk). Where k represents the discrete time
index. Note that instead of represents the x-coordinate pose of the robot, the Zr refers

to the state of the robot consisting both the spatial pose %;¥ and heading 6.
2.8.2 Measurement Model, Feature Extraction and Data Association

Besides of motion model, the second crucial part need to be involved before
working SLAM-based filter is a measurement model™ Bl 81 Measurement is the
observation process by utilizing the data generated using the sensor device relative to
the physical frame. There are many types of sensors that can be used to collect data
around the environment where the robot is operated, such as ranges sensor or camera
as the visual. Like on the part of the motion model, there exist unavoidable and

unpredictable noise cause the presence of uncertainty. Therefore, instead of using the
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deterministic model 2k = f(%k) the measurement is also represented by the
conditional probability density function P(2k|Zk). In this dissertation, the type of
sensor used as the primary measurement device is a laser scanner. It can be involved to
sense the environment from the robot frame. There are two common noises classified
to follow the range and bearing data. As the commonly generated input, the laser
scanner gives some measurements depending on the ranges of each angle of
measurement. Accordingly, it can be mathematically represented by the following

expression
12 N
2k = iy Zhy - - - Pl (2.8.2.1)
Where N refers to the numbers of entire per measuring data using a laser scanner

1 . .
and <k refers to a single value of ranges on once measurement. Therefore, it can be

known that if the laser scanner has capability to sense 180 ranges and the angle
increment of the index to index, the maximum number of measurements is 180. Further,
in order to approximate the single measurement of laser scanner, the conditional
probability of P(zk|Tk; M) can be concerned as the product of individual measurement

likelihoods. Mathematically it can be expressed as follows

p(zi|Te, m p(zy|zK, m (2.8.2.2)

u::]z

It is noted that, to approximate the single measurement, the state is firstly known.
Meanwhile, m represents the map of the environment. It tells that the map of the
environment should be specified before conducting the measurement. By definition, the
map stores the information relative to the series of the sensed object of the environment.
Accordingly, the mathematical representation of the object list of measurement can be
expressed as follows

m=my,May,...,Myr (2.8.2.3)

Where M refers to the number of objects available on the environment. There are some

ways to index the map, such as feature-based and location-based. Although they are
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essentially the same, feature-based is the most frequently used to represent the single
object available on the environment. Instead of indexing with a specific location, the
feature-based uses the value of ™ contains in Cartesian location. Although, the
specific location is most frequently used in 2D SLAM algorithm perspective. Therefore,
it is suppressing that many researchers prefer to represent "',y instead of using 7.
It aims to firmly show that all the objects are located on world coordinate < ¥. In this
dissertation, the usage of sensor model is concerned as the feature-based, which
involves the specific approach to extract the feature from single raw measurement.

[18] and since the function of feature extractor is denoted by [, then the

Referring to
information of the features that is generated from the range measurement can be
expressed as f(2k). The main challenges of extracting feature using this approach is to
recognize the feature from large data of range measurement resulting only small number
of features on environment.

The second fundamental component of feature-based mapping and SLAM systems is
feature extraction. It seeks to leverage the characteristic of different object in the
environment according the raw-sensed data. The low-level of feature extraction
algorithm return the classification of the feature such as points, edges, center of curve
segments and virtual corners.

Naturally, it can be achieved by using a geometrical feature identification approach.
This method involves a local curvature scale. Due to the needless of the constructed
scale space of map, this approach has been considered having an effectiveness and low-
cost computation. The important of using feature extraction is to predict the
measurement according the sensing data. Based on this observation, the extracted
features are then proceeded into the step of data association in the SLAM systems. The
key of data association is to manage the detected landmark in this observation. It is
processed and should be matched with the landmark produced by prior observation. All

the detected landmarks are then used as the part on the update process. The newly

detected landmark is added into the state vector as the observed landmark. This process
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is a predecessor step used to find the correspondence to the existing landmark. In which
it is an importation part before calculating the innovation error of measurement.
Commonly, the data association that is conducted based on the diversity between the

newly and observed landmark is Nearest-Neighbor approach.

2.8.3 Localization

Localization is the process to determine the robot position TR relative to the world
environment!'®- 181 Tt has been regarded as one of the crucial parts to make the robot

981001 There are commonly two general types of

autonomously navigate itself?7}-[87)-1
localization, namely relative localization and absolute localization. These models are
classified based on determining the position of the robot in the environment, whether
by utilizing the exteroceptive sensor or not. Since the localization does not use any
measurement data from external sensors, it can be classified as the relative localization.
Contrary, since the system utilizes the information acquired by the external sensor about
the environment, it is well-known as absolute localization. Since the localization

process's objective is to estimate the position of the robot given the information of the

previous position information, mathematically it can be expressed as follows
m=my,Mma,..., MM (2831)

It is clear to declare that since the previous state of the robot is determined from an
external sensor, the robot pose in the environment can also be discovered. The most
popular techniques used for this type of localization is a dead-reckoning. Recursively,
the previous robot pose is used as a base in the next step. It is used to determine the new
pose of the robot in the environment. Therefore, since the determination of the next
location can be predicted using the control command and the information of the base

data, the motion model algorithm mentioned above can be directly implemented.

2.8.4 Simultaneous Localization and Mapping

This section presents the big problem concerned as the manner to make the
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mobile robot to be truly autonomous. It is a termed problem that arises when there is
no map given to the robot, and the robot's location relative to the environment is
unknown, instead of the set of measurement 21:x and control command U1:k. It is
called Simultaneous Localization and Mapping (SLAM) or termed as Concurrent
Mapping and Localization (CML). In SLAM, a mobile robot acquires the map of the
environment and simultaneously localize its position relative to the global coordinate
system. Solving the SLAM problem has been considered to have a more challenging
task than only solving the localization problem. Since generating a map of the
environment requires the precise coordinate position of the robot and obtaining the pose
of the robot in the environment requires the known map, the SLAM problem has been
regarded as the chicken-egg-like problem. As discussed earlier that, since the presence
of the noise always unpredictably and time-invariant follows the system process and
measurement, the uncertainty on the perspective of solving the SLAM problem is
sufficiently hard. However, there has been an existing method to appropriately
addressing this problem, which is approaching the strategy based on the statistical
estimation from the probabilistic perspective. From the probabilistic approach, there are
two types of SLAM problems classified based on the posterior generated map, online
SLAM, and full SLAM problem. The online SLAM problem involves the posterior
estimation process over the momentary of robot pose along with the map [18].
Meanwhile, the full SLAM problem is a problem of estimating the posterior over all
the robot's pose, instead of the single entire along with the map. Graphically, they can

be illustrated as shown in Figure 2.2 and Figure 2.3, respectively.
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Figure 2.10 The Representation of Full SLAM problem!!*]
The difference between the two SLAM problems described above can be

probabilistically recognized. Since the objective of online SLAM problem is to generate
the marginalized pose of the robot along with map at the time £, it can be

probabilistically represented as follows
P (Ths M1k| 2105 UL:k) (2.8.4.1)

where Tk refers to the pose of the robot relative to the global coordinate system

]T

representing both its spatial position and orientation TR = [ZR.k YRk OR K , which
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is not the x-coordinate of the robot pose. Meanwhile, m represents the map of
environment. And Z1:x and U1:k are respectively representing the measurement and
control command. Meanwhile, the probabilistic consideration of full SLAM problem
can be described as follows
P (T1:k, m|21:k, ULk (2.8.4.2)

Regarding the graphical representation and Equation (3.7.2), it is clear to declare
that the full SLAM problem is estimating all the entire pose Z1:x given the set of
measurement 21:k and U1:k. However, the full SLAM is beyond the scope of this
dissertation. Furthermore, when the consideration of correspondence between the
measurement and map is involved, the probabilistic representation of online SLAM can
be described as follows.

p (Tk, M, Ck |21k, Ur:k) (2.8.4.3)

Note, the Ck represents the correspondence about the global coordinate system as
discussed on the localization algorithm. Since the main objective solving feature-based
SLAM problem is to approximate the location of all the landmarks on the environment
and the marginalized position of the robot in the global coordinate system, all the
Gaussian State Estimator discussed earlier can be applied. As the composed algorithm
of SLAM, it requires the transition of the robot and the way how the robot detects the
landmark. Additionally, the system requires to know how to differentiate the seen or
unseen landmark when it performs a measurement and construct the appropriately new
landmark from the raw measurement and find the correspondences. For these reasons,
the motion model, direct-based observation model, inverse-point based observation,
feature extraction, and landmark registration, and incremental likelihood principle are
also used to build a feature-based online SLAM algorithm based on Gaussian State

Estimation. It is discussed clearly in the second next chapter herein this dissertation.
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Chapter III Adaptively Determining The Recursive
Formulation of Noise Statistic for The Conventional

Filtering Method

The traditional filtering method requires the accurate system model and known
noise statistic. However, in real applications, there is almost no specific system model
caused by some factors, including the values of physical parameters, initial conditions,
or noise characteristics. Furthermore, there is no exact manner to predefine all the noise
statistics of the process, measurement, and corresponding covariances. Consequently,
applying the filter without any modification approach might degrade the estimation
method's optimality, which sufficiently increases the estimation error. Thus, all the
uncertain parameters and noise statistics should be estimated as an effort to alleviate
such effects. This estimation can be done during the filtering process by augmenting
the adaptation mechanism, well-known as the Adaptive Filtering process.

The main objective of adaptive filters is to tune the filter gain based on the
parametric variation or noise statistic that it is considered into the filtering process. The
modification approach of adaptive filter leads to the conventional filter for having the
ability to estimate the noise statistics and their corresponding covariance recursively.
Henceforth, the time-varying noise statistic and covariance are available in the filtering
process. The gain adaptation-based adaptive filter can be classified into three different
approaches(*4,

Joint Filtering of State and Parameters

All the unknown parameter of the systems is considered as the additional state.
Therefore, the new state vector contains the former and other state representing the
unknown parameter. Both of them are then used to calculate the posterior estimate of
the new state vector. There is a common method adopting the principle of Extended

Kalman Filter and Particle Filter. Although the corrective gain is tuned by referring to
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both former and additional states, this combination often causes numerical instability
in general for some cases.
On-line noise tuning

According to the error measurement, the filtering performance is regarded whether
there is divergence condition that occurs or not. If it is, the levels of measurement noise
and or modeling uncertainties are then tuned by adopting some techniques. If it is not,
the filtering process keeps the solution.

Batch estimation of parameters

In this approach, specific oft-line techniques are adopted for estimating the system
and noise statistic parameters based on a batch of measurements.

All the types of gain adaptation-based adaptive filters aim to estimate the unknown
parameters in the purposes to improve the gain effect to the posterior state estimate. In
this thesis, the types of batch estimation of parameters are discussed. The discussion of
the adaptive filter is used not only to improve the performance of optimal filtering type,
Extended Kalman Filter but also to improve the performance of the robust filtering type,
Smooth Variable Structure Filter.

First, the dynamic system of the Gaussian Nonlinear System is considered for

having the following characteristic.

Tk = f(xkf 7uk71) + wi
{ Rk = h(;k:) + v (3.1)

where k refers to the discrete time index, * € R™ is the representation of state
vector, u refers to the control vector, and z € R™ is the representation of
measurement vector. Meanwhile, w and v are the small additive noises of the process
and measurement, respectively, in which their corresponding covariances are denoted
by @ and R, respectively. Furthermore, f(-) and h(.) refer to the state transition and
measurement function, respectively. It is assumed that the characteristic of this dynamic

system model is expressed as follows
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Elwy] = qi, Covwy, wj] = Qrog;,
Elvg] = 7y, Cov|vg, v;] = Rydy, (3.2)
Elwg,v;] =0

where 4 is Kronecker delta function. Whereas, £[.] and Covl/] represent mean
and covariance term, respectively. Since, the values of the process and measurement
noise are nonzero mean but instead ¢ and 7, respectively, then

Me = Wk — ¢
N =V —T

(3.3)
Therefore, the equivalent formulation of equation (3.1) can alternatively be written
as follows

{ r = f(p_1,up—1) + pr +q (3.4)

zp = h(zp)me + 7
To equip the conventional EKF for having an ability to recursively estimate the
noise statistic, the Maximum A Posterior and Maximum Likelihood Estimation!* 8] are

separately used refers to Batch Estimation of Parameters.

3.1 Designing Adaptive Extended Kalman Filter Using
Principle of Maximum Likelihood Estimator and

Expectation-Maximization

Besides having an ability to approximate the process and measurement noise
recursively, this adaptation approach allows the new filtering method for also estimating
the corresponding covariance representing the uncertainty to the process and
measurement. Firstly, the MLE and EM are separately used to derive the conventional
EKF. It aims to find the unknown parameters of the noise statistic. The derivation seems
to be unobservable because of the requirement of estimates values from the original
form. However, the required values are essentially unavailable in the form of EKF. Thus,
EKF is modified and improved to tune the estimated value given by the MLE and EM
creation. This modification is adopted from the principle of one lag smoothing point

introduced by Gustafsson in 2000141} [631:[67] This process allows the EKF for having
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the tuned gain before it is proceeded to derive the main process of adaption. As a note
that, the adaption process using MLE and EM creation also approximating the
simplification into the multistep smoothing of some estimate values. Consequently, the
risk of having the degradation to the filter stability is high. Additional to modify the
EKF, the unbiased estimation is also involved to guarantee the filter quality in terms of
stability and robustness. By conducting this process, the solution of recursive noise
statistic is then almost complete. For the purpose of completing the last step of obtaining
the time-varying noise statistic and their corresponding covariances, the weighted
exponent strategy is involved. Finally, the optimal adaptive filter is done up to this point.
However, the presence of non-positive definite covariance noise statistics should be
concerned, which can diverge the filter solution. Accordingly, an additional Innovation
Covariance Estimation is utilized, aiming to guarantee the time-varying covariance
noise statistic of the process and measurement. This approach utilizes the principle of
ICE®) [®1] to tune the quadratic error measurement, which can precisely give positive
values to all the elements of the representative matrices of the covariances. The process
of finding the recursive noise statistic and their covariance is detail discussed as follows.

Firstly, the model of the non-Gaussian system presented by Equation (3.1) and all
its characteristics are recalled. Secondly, assuming that 0=1(q,7,Q R) are the
unknown parameters representing the noise statistic of the process and measurement
and their corresponding covariances, respectively. It is assumed as the desire of the
adaption process, which can be found by recursively estimating it. Afterward, the
estimated values of 6 can be obtained by utilizing the Maximum Likelihood

Estimation [8]. It can be expressed as follows
gt —=argmaxy{In[L(q,r, Q, R|Zx, X))} (3.1.1)

where L(¢:7,Q, R|Zy, X&) is termed as the likelihood function of ¢ = (¢, 7, @, R) Tt

can be expanded as follows
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L(q,r,Q, R|Zy, Xi) = p(Zk, Xi|q,7, Q, R) = p(Xi|q, 7, Q, R)p(Zk| Xk, q, 7, Q, R)
(3.1.2)

For Xk = [T1,22,...,... ,Tk—1,Tk] and Zk = (21,22, ...,. .., Zk—1, 2k]. Since

Equation (3.1) is the first-order Markov process, Equation (3.1.2) can be expressed as

follows

k k

i=1 i=1
Then by considering that these prior knowledges are normally distributed, then
Equation (3.1.3) can be derived as follows

1
(2, Xilg, 7, Q, R) = pPCE I

[z — ol 71 +

DN | =

P QI R exp{ -

T

k

ZHIEz % 1 — g 1||Q 1 ‘J"ZHZZ 7"ZHH 1}}
=1

(3.1.4)
by taking logarithm, it yields

k(n+m)+n

ln[L(Q7TaQ7R|Zk7Xk')] = - 9

In(2m) — 5 In(| 1)) — & n(|Q]) ~ & (|R))-

2 o - OHP”_‘ZH‘%_ wit) ~dillg o+

Z [2i = h(zi) — Ti”?g,l
i=1

In this point, the role of Expectation-Maximization!’!! is utilized to solve all the
equations of suboptimal-Maximum Likelihood Estimation above. It aims to
approximate both the process and measurement noise statistic as the suboptimal
solution. Basically, the process under this principle follows two main steps, namely
expectation-based strategy and maximization-based strategy. These steps are done
sequentially. For the detail, it can be presented as follows

This manner proceeds the derived equation by taking the expectation of the

logarithm form In[L(q, r, @, R|Z), X})]. Analytically, it can be presented below
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E[lL(q.r.Q. RIZi X)) = - " M om) D) - i)

k

k 1 .

SR = 5Bl — ol + 3 s — flaica)-
=1

k
Gi1g-1+ Yl — k(i) =il }

i=1
(3.1.5)
Supposing that C' is a representative form of all the constant
k(n+m)+n 1 1 )

then the equivalent form of Equation (3.1.5) can be alternatively written as

k
E[In[L(q,r, Q. R|Zy, Xi)]] =C — glnﬂQ\) - gmmo - %E[Z i = f(@izn)=

k
s + 3 e ) il
=1
(3.1.7)

tion that i3+ =a”b™" - -
by definition that [1%llp—1 = @ @ thus Equation (3.1.7) can be sufficiently

derived as follows

k
J=C— gln(|Q|) - gln(|R|) - é ;E{tr[Ql(xi — f@ic1) = qio1) (20 — flaio1)—
1)) 5 S Bt s ) = ) s ) - )]}
(3.1.8)

where J represent the objective function of £ [In[L(q, 7, Q, R|Zy, X)]]

At this point the estimate noise statistic can be obtained by maximizing J function.
It can be done by taking the partial derivative of J with respect to the unknown
parameters 6, which are ¢:7-@ and R. Afterward it is proceeded by equating all the

partial derivative to be equal to zero. Analytically, it can be expressed as
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oJ oJ 0 oJ oJ

9, =05 =050 ="5p =0 (3.1.9)

Since @ and R are assumed to be positive definite matrices, then it can be

described as follows

Q| =tr(Q)
{ Rl = tr(R) (3.1.10)

For || represents the determinant matrix operation and tr(.) represents the trace
of matrix. Therefore, the partial derivative of J with respect to ¢;"&-and R, can be

respectively calculated as follows

AT 1L
qr = 8—q = A ;wuk - f(l“zeuk) (3.1.11)
szk Z‘k (3.1.12)

wl»—‘

k
Z Tk — f@iz1k) — @) (T — flzime) — Q)T (3.1.13)

;v\»—‘

k
Z zitk — W) =) (i — hlag) —7)" (3.1.14)

The complicated multi-step of smoothing term %ilk and %i-1/k in Equation
(3.1.11) — Equation (3.1.14) is required to be simplified in order to ably continue the
adaption process. It can be done by replacing %i—1lk with Ti-1[i and ¥ilk with ¥ils,
Similarly, it is conducted to the complicated form of Zilk as well. Therefore, the

following equations are presented

. 1
Gk =7 D wii = fl@iy) (3.1.15)
i—1
Lk
Tk = z ;Zzz — h(z;);) (3.1.16)
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k
Q= 11: D (i = fliap) = ) (g — flaia) —a) (3.1.17)
i=1
., 1 .
Ry, = A Z (zipi — h(@yp) — 1) (24 — h(zip) — 1) (3.1.18)
i=1

Regarding to Equation (3.1.15) — Equation (3.1.18), it can be noted that Ti-1li is
precisely not given by the original form of Extended Kalman Filter. For this reason,
besides deriving its form under assumptions of Maximum Likelihood Estimation and
Expectation-Maximization creation'®], the use of one step smoothing point is also
involved aiming to tune the corrective gain. Besides that, it aims to provide the estimate
values which cannot be found directly from the conventional EKF.

By referring to Appendix A, the estimate value of Ti-1li and Tili canbe adopted
from Equation (A.6) and Equation (A.13), respectively. However, the simplification of
multistep smoothing conducted above might degrade the quality of the optimal
Maximum Likelihood Estimation and Expectation-Maximization form. Therefore, in
order to anticipate the risk, the unbiased estimation is involved. The process can be
mathematically shown below

First, by substituting Equation (A.7) into Equation (A.12), the general term of
Tifi = f(®i-11) in Equation (3.1.15) and Equation (3.1.17) can be sufficiently

rewritten as

Ty — f(@io1) = Kiezqpio1 + ¢ (3.1.19)
Then replacing Tili with Equation (A.12), the general term of Zi = M(Zifi) in
Equation (3.1.16) and Equation (3.1.18) can also be rewritten as
zi — h(Zi)) = 20 — h(Zi)i—1 + Kies 4i-1) (3.1.20)
Therefore, it yields
T
qk = p ;Kﬂmuq + qi—1 (3.1.21)
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k
Tk Z (I = HKi)ez i1 + 13 (3.1.22)
. 1F
Qk = E Z €2,ili— 1633 jili— 1KT (3123)
1 k
RBi= 2 (= HEezgiaes (1= HE) (3.1.24)

1

<
Il

T
Since the innovation or error measurement ©z.klk—1 and its covariance ©*lk—1€k[k—1
are contained in the estimate values of the process and measurement noise statistic, thus
ezilim1 = M Tipi—1) +vi — 13 (3.1.25)

Assuming that Equation (4.1.49) is satisfied
T —
€2 klk—1€2 klk—1 = i (3.1.26)

It is noted that the corrective gain in Equation (A.5) can be derived as

K; :pi|i—1HT(Si>_1

Pi|i—1HT(ez,i|i—1€£k|k_1)71 (3.1.27)
It is obvious to obtain the following equations
Kiez,i|i—1€£i|i_1 = Pz'|¢—1HT (3.1.28)
ez,i\i—lezi\i_1KiT = (Kiez,i|i—1€£i|i_1) = HP|Z = HPy; (3.1.29)
Kie. g€l K] = KiHP[, | = K;HPy;_4 (3.1.30)
Once Equation (3.1.30) is calculated, then it is clear to have
Pm = - KiH)Pi\i—l
Py =Py — Py 1 KGH (3.1.31)
Py 1K H = Py — Py
Substituting Equation (3.1.31) into Equation (3.1.30), then
Kz'ez,i|i—1€sz|7 K =Py 1Py =FPi_1; 1 F" + Qi1 Py; (3.1.32)
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T
Now assuming that the expectation form of ©z.ili—1 and ©#ili—1€z,ili-1 are

E[ez,i‘ifl] =0 (3133)
E[ez,i\iflezi\i_ﬁ = HPi\iAHT + R; (3.1.34)

By substituting Equation (3.1.25) — Equation (3.1.34) into Equation (3.1.21) —

Equation (3.1.24), it is clear to have

ElGe] = qx (3.1.35)
Elfy] = g (3.1.36)
. 1
ElQr]=Qr+ E {E Z FPy;_F" — Py, (3.1.37)
=1

Once Equation (3.1.32) is calculated, it can be used compactly reform the noise
statistic . The process is sequentially done as follows. The formulation of covariance

matrix of measurement noise statistic &£ can be derived as

k
- 1
Ry = . Z (I - K;H)e, - 1€Zz|i—1(1 — K;H)T (3.1.38)
for
(I - KiH)ez,z'|i—1€ZT,¢|i_1(I - KiH)T = ez,i\i—lezi\i_1 - HKiez,i\i—lezi“_l*
€z,¢|i—1€£i|i,1KgHT + HKiez,iu—leziquiTHT
(3.1.39)

I —K;H)e, ;j;_1er ... (I-K,HT=HP,, \H' —2HP,;, H' + HK,HP;; H"
X zili—1 | \ |
=R;— HP,; +H" + HK;HP,; 1H"
=R;— (I - HK;)HP;; H"

(3.1.40)

Then by substituting Equation (3.1.25) — Equation (3.1.34) into Equation (3.1.21)

— Equation (3.1.24), it is clear to also have
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k
> 1 T T
E[Ry] :E{ . ;(1 — KiH)e 1€l (I — K;H) }
k

1 T
:E{ . ; R, — (I - K;H)HPy, \H }

k
> —(HPyj; 1 H" - HKiHPZ-”_lHT)}

=1

(3.1.41)

1

k

1

=Ry + E{ —Y HE;HPy; 1H" — HPZ-|Z-1HT}
k =1

where Rk refers to Equation (3.1.24), then Equation (3.1.41) becomes

Ry =

wl*—‘

k
ZI KiH)e, i€l y; (I — K;H)T + HKHPy; (H" — HPy; 1 H”

(3.1.42)

where
(I — KiH)e, jji—1el,; (I — K;H)" + HKiHP,-“_lHT — HPy; ,H"
zili—1 ez.,ili—lez,iufleTHT‘{‘
Ko’ + HK~HPZ-|Z-_1HT — HP,;H"
z,ili—1 ez,ili—lezT,i|i—1KiTHT+
HKie. jires,; K H" + (I — K;H)(HPy; 1 H")
—(I — HK;)[ez iji—1el (I — K;H)" + HPy;_H" ]

_ T
=€2i[i—1€ ;i1 — HKie, )i el

T
HK;e, ;1€

z,i|i—1

_ T
_ezﬂi—lez,iﬁ 1 —HK; 1€z i|i— 16

(3.1.43)

Then the equivalent estimate values of R is obtained as

k
Z (I — KiH)[e. i vel (I - K;H)T + HP; 1 H' | (3.1.44)

wlw

Similarly, since 9%k, 7Tk, and Qk in Equation (3.1.35) — Equation (3.1.37) are

respectively 4k, Tk, and Qk in Equation (3.1.21) — Equation (3.1.23), then their

recursive forms of noise statistic are

1
Gk =7 D Kieziimi +di (3.1.45)

=1
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k
ZI HEK)e, i1 + 7 (3.1.46)

P?‘ \

k
A 1
Qk: Ez i€2,i|i— 1€zz|z 1K +FPZ 1li— lF P|z (3147)

Note that Equation (3.1.45) — Equation (3.1.47) represent the properties of the
unbiased recursive noise statistic of Equation (3.1.21) — Equation (3.1.24). Therefore,
according to Equation (3.1.44) — Equation (3.1.47), the time-varying noise properties

can be derived as follows

. . 1
Gk = qk—1 + E(Kkez,k\k—l) (3.1.48)
. . 1
Pe=Te-1F o (I — KpH)e, gji—1) (3.1.49)
A k-1 1 T T T
Qr = TQk—l + I [Kkezymk*lez,mk—lKk + Fi—1Ppjp-1F5_1 — Pk|k]
(3.1.50)
- E—1 4 1 T T T
Ry, = o Ry_1 + E(I — KpH) e ppp—16s pp1(I = KpH)" + HPy 1 H'

(3.1.51)

(81, [13), 141 1791 in where the

1
weighting coefficient dr is formulated to replace the exponential k, then the

Therefore, by applying the weighted exponent!*!

alternative formulation of Equation (3.1.48) — Equation (3.1.51) become as follows
Gk = Qr—1 + di(Kpez gjk—1) (3.1.52)
P =Pr_1+dp[(I — KpH)e, pjr—1] (3.1.53)

Qr = (1 —dy,)Qp—1 + di [Kkez,k|k—1€£k\k_1Kg + PPy g T — Py
(3.1.54)
Rk = (1 — dk)kal + dk([ - KkH) [ez’km_lezk‘k_l(l - KkH)T + HPk|k_1HT

(3.1.55)

where the weighting exponent are expressed as
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=i T 6.1:56

{51 = dp '

where b is a fading factor satisfying 0 < b < 1 and Bi refers to i-th weighting
k

2B
factor defined as Bi = Pi—10 and satisfying i=1 . Up to this point, considering that

@ and R are positive definite matrices. Thus, to guarantee Equation (3.1.54) and
Equation (3.1.55) to be positive definite matrices, the innovation covariance estimation
is involved to the proposed method. It has been proven to be able to depress the filter
divergence as introduced in!20} 211 [59). [61). 73] The process can be summarized as
follows. First, assuming that the following form is representation of innovation
covariance indexed by k&
1 = 1
ICE, = z Z ez,k‘j,lef’k‘j_l =ICE, + N [ezvkeZT’kezyk_NeZ:k_N}
j=0 (3.1.57)

by replacing €2 kk—12 k|1 with [CE}, equation (3.1.54) and Equation (3.1.55)

can be alternatively rewritten as follows

Qr = (1 — dp,)Qp_1 + di [KWICEGK] + FPyyjp 1 FT — Py ] (3.1.58)

Ry = (1 —dy)Ry—1 + di(I — KH)[ICER(I — K, H)T + HPy 1 HT]
(3.1.59)

As described by Equation (3.1.57), the window size N plays a role of achieving
an IC'E accuracy. N is able to prevent the occurrence of the biased situationin IC'E
by setting it to small value for the fast change of the dynamic system. Besides that, it is
also able to improve the stability of the unbiased IC'E by setting it to large value for
the slow change of the dynamic system. Simply, the adjustment of window size is
strongly depending on the characteristic of dynamic system which can empirically to
be adjusted. Then, it is noted that the noise estimator is stable when the following
definition is satisfied!®]

tr(ICEy) < k.tr(5) (3.1.60)
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where & is a reserve factor that satisfying x < 1 and t’“(-) refers to the matrix trace.
The stability equation expressed by Equation (4.1.83) shows that ~ also plays an
important role as a threshold to know the incorrectness of the noise statistic when the
measurement outliers occurs. By means, it is an issue when the ratio between tr(ICE)
and t7(5) is out of the threshold value & at current step k. Therefore, an additional of
the innovation covariance estimation will obviously be keeping the stability of

estimated value & and R by isolating the current innovation covariance

T
€2 klk=1€z klk—1 with its calculated value. Up to this point, the adaptive EKF can be

graphically summarized as follows

Xk-1|k-1

State Prediction

Smoothed EKF
moothe )

Pr—1jk-1

Estimate Kalman

Zk

Figure 3.1 Working Principle of Adaptive EKF Based on MLE and ICE
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3.2 Designing Adaptive Extended Kalman Filter Based on
Maximum A Posteriori Estimation and Weighted

Exponent

Besides using Maximum Likelihood Estimation and Expectation-Maximization
creation, the adaptive Extended Kalman Filter can be formulated by involving the
principle of Maximum A Posteriori and Weighted Exponent. There is no difference in
this strategy since the solution offered in this way is the same as the previous solution.
But, in this way, the process adaption is more straightforward and faster. Sequentially,
the Maximum A Posterior!!3}- [0 [381. 1791 [82] jg yged to derive the traditional EKF by
assuming that the unknown parameters are the noise statistic of the process and
measurements, which are not zero mean anymore. Additional to these parameters, their
corresponding covariance are also estimated. There are some estimate values, which
cannot be adopted directly from the original form of EKF. Therefore, the same strategy
of EKF improvement is also conducted. It involves the use of a one-lag smoothing point.
Essentially, by performing this improvement, the estimation error is sufficiently
reduced because of the smoothing process. This smoothing process is commonly
intended to tune the corrective gain aiming to present more responsive and proper gain
to the estimation process. The improvement process is conducted to make the
mathematical derivation to be observable. It returns the sub-optimal solution, which is
the embryo of the recursive noise statistic and covariance for both the process and
measurement. Furthermore, the simplification of the multistep smoothing point is also
concerned. Consequentially, it might reduce the stability and quality of the estimated
unknown parameters, increasing the risk of having a non-positive definite character to
the covariance of the noise statistic for either the process or measurement. For this
reason, a certain approach should be concerned. In this research, the divergence
suppression method is used to tune and reconstruct the covariance of the error state

Pijk—1 of the smoothed EKF. This stage is also the reason that makes the approach of
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Maximum A Posterior, and Maximum Likelihood Estimation is different. Before this
stage is conducted, the unbiased estimation is also involved to guarantee that the
adaptive EKF is still kept to have the unbiased characteristic to the estimated values. It
is sequentially and separately conducted after performing the approach of the weighted
exponent. In order to give a clear process of this method, the analytical process of
Maximum A Posterior and Weighted Exponent Principle-assisted Extended Kalman
Filter is presented below. Firstly, the model of the non-Gaussian system presented by
Equation (3.1) — Equation (3.2) and all its characteristic Equation (3.3) — Equation (3.4)
are recalled. It is then used as the base for the EKF formulation.

Secondly, a classical EKF was estimated by utilizing MAP creation[>¢} [6%)- [71]. [81].

(1921 in order to responsively generate the noise statistic for the next iteration based on
the previous iteration. Assuming that, the unknown parameters are the process ¢ and
measurement r noise statistics with their process covariance ¢ and measurement
R which are characteristically assumed to be positive definite symmetric matrices.
Assuming that J = Xk a7, Q. R, Zi]  is a joint probability density function
described as follows

J = p[Xk7q7T7 Q?R7 Zk] = p[Zk‘X]wq?raQa R]p[Xk‘(LTa Q?R]p[(LTa QvR] (321)

and considering that the conditional density function J*

p[le q,7, Qa Ra Zk]
p[Zk]

where Xk = [T1, %2, @k] and Zk = [21, 22, 2] Tt s regarded that p[Zk]

J* = p[Xka an7Q7R|Zk] -

(3.2.2)

plays no role in optimization, then by utilizing MAP the estimated values of

0 =gq,m,Q, R denoted by 0=4q,7QR can be calculated by solving the following
expression
Onsap =arg maxy (ln[J]) =arg maxg (lan[Zk|Xk,q,r,Q,R]p[XHq,r,Q,R]])
(3.2.3)
Where P[4,7: @, R] can be obtained from the initial information. Then, by assuming

that Equation (3.1) is first order Markov process then plZk| Xk, q,7, Q, R] and
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p[Xklg, 7 Q. R] can be respectively factorized as follows

k

p[Zk|Xk:7Q7T7Q7R] = ZP[Z2|$Z,TR] (324)
i=1
k
p[Xk|Q7 T, Q7 R] = p[.To|P0] Zp[xi|33i—17 q, Q] (325)
=1

Now, considering that Equation (3.2.5) is normally distributed, then

k

1 1 . ] 1 [ 1
Xilg,r, Q,R| =———Fexp | — = ||lzg — & -1 | X ————exp | — =
p[Xklg.r, Q, R] T p[ 5 llzo = Zollp, iH127T2|Q|§ Pl 5
s~ Fai)
k
1 1 o ] 1 [ 1
= 1 & — —||Tgp — X -1 X?GX - = Z;
A mE o |~ gl -l | x e [ <320
= flwiz1) - qél]
(3.2.6)
. C, =278 — —— )
assuming that 2 represent a constant, then Equation (3.2.6)

can be rewritten as follows

_1 k 1 N
p[Xk, g7, Q, R) =C1|Py| ~2|Q|? x eXp{ - E{HCCO — 960“?:01} + {Hfﬁz‘ — f(mi_q)—

)

(3.2.7)
Similarly, Equation (3.2.7) is also normally distributed then
k
1 2 }
Zilg,r,Q, Rl = || ——exp | — = ||zi — h(x;) —r||p-1
plZuigr @1 =] gy exp | — 5 oo hte) el
X (3.2.8)
1 _k 1 2
= IR exp [2 >l = e - THR11

mk

Assuming that C2 =272 represents a constant, then Equation (3.2.8) can be

rewritten as follows
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k
p[Z| X1, 4,7, Q, R] = Co| R| ™ exp [Z |2 — h(xi) — 7| 5s (3.2.9)

=1

Substituting (3.2.7) and (3.2.9) into (3.2.2), then

k
1,k _k 1 .
J =C1Co|Py| 2|Q| " 2|R|” 2 eXP{ —i[Hwo—l‘o”iol +Z;H$i—f($i1)—qu

k
+3 llzi = hl@) = vl e ] } x plg,r,Q, R
=1
(3.2.10)

1 1 R
C = CCy|Py| 2 eXP[—§ |z — $0||§30*1] x plg,r, Q, R|

by assuming that , then

(3.2.10) can be rewritten as follows

k k
_k ok 1
s =clQr Rl Fexp{ = 5| Sl = o) allyes + 3 s o)
1=1 =1

)

At this point, by ignoring the constant and taking logarithm of Equation (3.2.11), yield

(3.2.11)

k k
k k 1
in(J) = = 5in|Q| = Sn|R| - 5 {Z lw: = f(@izi) = @l + D Iz — hlzi)—
i=1 =1

2
TpR-1

(3.2.12)

Substituting Equation (3.2.12) into Equation (3.2.2), then it is obvious the estimated 6
can be obtained by taking partial derivative an equating its result to zero as expressed

below
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(. Jln(J)
q= Tq|q:ék
s 8lg(J) ‘ B
r r=rg
- din(J (3.2.13)
Q= 8@ ’Q Qn
. 8ln

Then 4, 7, &, and R can respectively written as follows

k
qk = % Zxﬂk — fzi—r) (3.2.14)
i—1
Tk = Zzz|k (Z4|x) (3.2.15)
R 1 .
Qk =13 (@i = f(@imaw) = @) % (@i = f(@ioax) = 0) (3.2.16)
i1
1< .
=7 Z zifk = hagr) — ) x (zik = hl@gr) — ) (3.2.17)

The complicated multi-step smoothing term %ilk and Ti-1lk in Equation (3.2.14) —
Equation (3.2.16) might cause inefficiency of the MAP estimate. Therefore, in order to
find the conventional and efficient recursive form the simplification is needed. Note,
that the recursive update process only utilizes the estimate value at time k-1 and k hence
the simplification can be conducted by replacing %i—1/k with Ti-1li and Tilk with

i, Therefore, the suboptimal of MAP noise estimator can be expressed as follows

k
o1 A
I =7 Z%’u — fzi-1)i) (3.2.18)
i=1
L
Tk = A Zili — h(Z);) (3.2.19)
i=1
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k
Qk = Z Ti|s — z—lli) - Q) X (fiu - f(ii—ui) - Q)T (3.2.20)

?rlb—‘

k
Z Lll - T) X (Zili — M) — T)T (3.2.21)

As can be analyzed from the sequence equations above that the estimate value of
Ti-1li s not provided obviously by classical EKF. Therefore, modifying the original
forms of EKF is required. It aims to compute the noise statistics estimator effectively.
The process of modifying the EKF can be done by calculating the one-step smoothing
of the EKF gain and its corresponding estimate value using the one-smoothing point
algorithm[?3) 167} 1691 (see Appendix A).

Referring to Appendix A, the estimate value of Ti-1li and Tili can be adopted
from Equation (A.6) and Equation (A.13), respectively. The simplification of multi-step
smoothing conducted above might degrade the quality of MAP estimate. Thus, in order
to depress this possibility, the unbiased estimation concept was utilized. The process
can be described as follows.

First, by substituting Equation (A.7) into Equation (A.13), the general term
Tifi — F(@i-1s) in Equation (3.2.18) and Equation (3.2.20) can be rewritten as follows
Ty — [(@io1i) = Kkez -1k + ¢ (3.2.22)
Then replacing Tili with Equation (A.13), the general term <i — h#iji-1) in
Equation (3.2.19) and Equation (3.2.21) can be written as follows
zi — h(Zi)i-1 + Kiez 4i-1) (3.2.23)

and the suboptimal MAP estimation in (3.2.18) - (3.2.21) can be arranged as follows

k
. 1
I = 7 Z Kie. iji-1+4q (3.2.24)
i=1
1 k
= Z (I - HK))e, i1 +7 (3.2.25)
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k
1
E Z €z,ili— 1€z Ji|i— 1KT (3226)

S =
'M»

Ry= 2SI HE)e., i1l i (I — HE;)T (3.2.27)

1=1

T
Since the innovation ©zili-1 and its covariance ©#li—1€z,ili-1 are contained in the
process and measurement noise estimator, therefore

ezi-1)i = h(Tiji—1) +vi — 7 (3.2.28)

Assuming that the equation below is satisfied
T —
€2 klk—1€2 klk—1 = i (3.2.29)

then the corrective gain in Equation (A.12) can be derived as

K; =Py 1H"(5;)™"

_ (3.2.30
:Pi|i—1HT(ez,i|i—1e£k|k—1) ! :
ez,i\iflezi\i_lKiT = (Kiez,iﬁflez’”i_l) = HP|1 1 =HPy)i (3.2.31)
Kiez.ﬂiflezzh 1KT K; HP|Z = KiHPy; (3.2.32)
Pi\i = (I - KiH>Pi\i—1
Py = Pyi—1 — Py 1 KGH (3.2.33)
Pyi 1 KiH = Py 1 — Py
Substituting Equation (3.2.33) into Equation (3.2.32), it yields
Kiez,iﬁ—lezzh 1K = P 1Py = FP_q);— W FT o+ Qi—1P; (3.2.34)
. €y ili_1€l
taking expectation of €z,ili-1 and “#ili—=1%z,ili-1 then
Ele.;ji—1] =0 (3.2.35)
Ele.ijiv€ 1] = HP 1 H' + R (3.2.35)

Now substituting Equation (3.2.28) — Equation (3.2.35) into Equation (3.2.24) —
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Equation (3.2.26), it yields

Elgrl = q (3.2.36)
Elry] =r (3.2.37)

. 1F
E[Qk] = Q‘FE[E ;FpililFTpii (3.2.38)

However, to ease our calculation, the formulation of covariance matrix for the

measurement noise statistic /2 should be derived first. It can be sequentially described

as follows
L F
Ry =~ Z (I — KiH)e. ;—1et,; (I — K;H)" (3.2.39)
for
(I - K¢H)€z,i\i—1ezT,i|i_1(I - KiH)" = 6z,ili—lezT,ili—l - HKieZﬂi‘i—levai\i—l_
ez,ili—leziﬁ—lKiTHT + HKiez,i\i—lezi\iflKiTHT

(3.2.40)
Compactly, Equation (3.2.40) can be expressed as follows
(I — K;H)e. jji—vel (I — K;H) =(HPy,_1H" + R;) —2HP;; _yH"+
HK;HP,; H"
=R, — HP,, \H" + HK,HP;; H"
=R, — (I - K;H)HP;; H"

(3.2.41)

Then by substituting Equation (3.2.28) — Equation (3.2.35) and (3.2.41) into Equation
(3.2.27), it yields
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k
. 1
E[Ry] :E{ . > (I - KiH)e, jji—1ely; (I — KiH)T}
=1
1 k
:E{ . > Ri—(I- K,L-H)HPm-lHT}
=1

. (3.2.42)

1 T T
=Ry, + E{E > —(HPj;H" — HK;HP;; \H )}

=1

k
1
=Ry + E{ . > HK;HP; \H" - HPZ-|Z-1HT}

i=1
According to Equation (3.2.36), Equation (3.2.37), Equation (3.2.38), and Equation

(3.2.42), it is known that ¢:7,Q; and R are Ik, T, Qk, and Rk, respectively.

Therefore, it is clear to have the suboptimal recursive noise statistic as presented below

k
qk = EKiez,iM—l + q] (3.2.43)
i=1

S =

Tk =

>
| =
M-

(I - HKi>€z,i|i—1 + 7“] (3.2.44)

1=1

k
A 1
Qr = % E Kiez7i|i—1€,£z"i71KiT + FPz'—l\i—lFT - Pi|i] (3.2.45)
i=1

Since R in Equation (3.2.42) is Rk referring to Equation (3.2.27), then its recursive

form can be derived as

k

1
> (I - KiH)e, et (I - KH)" + HK;HPy; 1 H" — HP;; 1 H"
=1

Ry =

|

(3.2.46)

where
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(I — KiH)e. i€l ,; (I — KiH)" + HK;HP), _yH" — HP;;_H"

Z.,i|z'fl - ez,ili—lezz‘ﬁquﬂHTﬂL

Ko™ + HK,L-HP”Z-,lHT — HP,;H"
z,ali—1 Z,i|i*16£i|i—le’THT+

HKie. jji1es,; K H' + (I — K;H)(HPj; _1H")

—(I — HK;) ez -6l i (I — KiH)" + HP;;_ H"]

_ T
=€zii—1€ ;i1 — HIe, ;1€

T
HKiezﬂifle

z,ili—1

_ T
=Czili—1€4 i)i—1 — HK;e, ;- el

(3.2.47)

Then the equivalent estimate values of I is obtained as

k
Z I—KH)e.iiret (I - KH)" + HPW_IHT] (3.2.48)

?vlr—‘

Note that Equation (3.2.43), Equation (3.2.44), Equation (3.2.45), and Equation
(3.2.48) represent the properties of unbiased recursive noise statistic of Equation (4.2.24)
— Equation (4.2.27) , respectively. Therefore, according to Equation (3.2.43), Equation
(3.2.44), Equation (3.2.45), and Equation (3.2.48), the time-varying noise properties

can be derived as follows

R o1
dr =4+ E(Kkez,k|k—1>] (3.2.49)
. S
T =T+ E [(Z - HKi)ez,k\kfl} (3250)
k—1. 1 - . .
Qr = TQ +e [Kkez pir—1€; g1 K + F P11 FT — Py (3.2.51)
A k—1 - 1 T T T
Rk; == TR+ E(I - HKk) X [ez,k|kflez,k|k—1(1_ HKZ) —|—HPk|k,1H ]
(3.2.52)
Where 4,7 Q R are ka—l,ﬁ—l,@k—g and Rk—l, respectively. Therefore by
applying the weighted exponent!'4: [0} [102] "where the weighting coefficient dk is
1

formulated to replace the exponential k, then the alternative formulations of Equation

(3.2.49) — Equation (3.2.52) become as follows

Gr = Gp—1 + di(Kpez gjx—1) (3.2.53)
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T =1+ dp[(I — HKy)e, gp—1] (3.2.54)
Qr=(1—di) Qi1+ dk[Kkez,k\kqezm,lK;? + FPy 11 FT — Pp]
(3.2.55)

Ry =(1— dk)Rk—l\k—l +d(I — HKk)[ez,Mk—leZ,Mk—l(I — HEK) |+

HPyH"
(3.2.56)
the weighting exponent is expressed as follows
{ﬁ;k::dii;, fori=1..n (3.2.57)

where b is a fading factor satisfied 0 < b < 1 and B is the i-th weighting factor
k

> B

defined as i = Bi—1b* and satisfied i=1 . Next, to prevent the occurrence of a filter
divergence, the covariance correction based on divergent suppression concept was
applied. First, by referring to the covariance matching creation, the convergence
condition can be described as follows

vive > S.tr[E(vio}l)] (3.2.58)
where S is an adjustable coefficient presetting that satisfied (S =1) and vk refers to

other forms of innovation sequence thatis Y% = #k — h(Zk|k-1), The main point of this

process is correcting the error covariance matrix Prk—1 when the convergence
condition above is not satisfied. The contrary, Equation (3.2.53) — Equation (3.2.56)
will directly be used in this proposed method. Mathematically, this analogy can be

described as follows.

vive , k=1

ngJC . (3.2.59)
Uk Vi
Pyjr—1 = MePrji1 (3.2.60)

Where Ak is well-known as the adaptive weighting coefficient which is calculated

64



FIEREA AR S

based on the fading factor formula [74], [97] as described as follows

[Nk
A=t
0 Ttr[Mk] (3.2.61)
_ )\0 3 AO 2 1
Ao = { 1 M <1 (3.2.62)
where N and M refers to the following equation
Ny =tr(Coy — R)T (3.2.63)

Where t7(-) is representation of a matrix trace operator and P is forgetful factor
satisfying 0 < 2 > 1 commonly adjusted to 0.95. Note that by increasing this factor
will create a smaller proportion of the information before time A4l It causes the
residual vector effect to become prominent so that the ability of filter tracking increase.

Up to this point, then the Adaptive EKF can be graphically summarized as follows.

Rr-1]k-1

—

- Smoothed EKF P11 B eton Measurement
—l - f(.) h()

4
Correcting
Py

Estimate Kalman

Zy

pk—llk

A
Rk

p&“‘
Qk

G

Update Step

e Ry

Figure 3.2 Working Principle of Adaptive EKF Based on MAP - Weighted Exponent
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3.3 Designing Adaptive Smooth Variable Structure Filter
Based on Maximum A Posterior Estimation and

Weighted Exponent

Like Extended Kalman Filter, the Smooth Variable Structure Filter traditionally has
no ability to update the noise statistic of the process and measurement recursively. For
this reason, the modification approach is also recommended to be concerned before
using it. As proposed in this dissertation, this modification is intended to effectively and
responsively update the predefined noise statistic parameters. It leads to the definition
of an adaptive filtering method. In this thesis, the adaptive approach based on a batch
estimation of parameters is also conducted as an effort to improve the capability of
SVSF for estimating purpose. In order to equip SVSF with an ability to recursively
provide the responsive noise statistic, the maximum a posterior and weighted exponent
are used in this experiment. Firstly, SVSF is mathematically derived using a maximum
posterior to get the suboptimal solution of the time-varying noise statistic. Due to the
lack of multi-step smoothing values on the estimated variables, the SVSF is firstly
modified. The discrete index of some complicated estimate values seems to be
unobservable. Therefore, as the purpose of continuing the derivation process, the
simplification is conducted. However, the modification and simplification might
degrade the quality of the adaptive SVSF or even lead to the divergence condition.
Consequently, the new adaptive form of SVSF has the risk of being unstable, having
bias conditions, and inaccurate solutions. It is because of the presence of a nonpositive
definite matrix for covariances of noise statistics either to the process or measurement.
For this reason, the unbiased estimation is also involved. It is used to guarantee the
solution given by the adaption process. Besides that, the divergence suppression method
is also concerned to guarantee that the adaptive solution under this approach has high
convergence. This suppression method is conducted after performing the weighted

exponent used to more derive the suboptimal solution given by maximum a posterior
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as the final effort to keep the stability, robustness, and effectiveness of SVSF as the
robust estimation method. The detailed process of this adaption is presented in this
dissertation as follows.

Firstly, it is assumed that the dynamic system model used in this process can be
recalled from the Equations (3.1). It is completed with the characteristic of the noise
statistic for the process and measurement as well as their corresponding covariances as
expressed by Equation (3.2) — Equation (3.4). Secondly, in order to ease the

mathematical derivation, the summary of the traditional form of SVSF is represented

as follows
Trik—1 = [(@r—1)k—1, k) (3.3.1)
Pyj—1 = FPy_1p1 FT + Qy (3.3.2)
Zkjk—1 = h(Tgjp—1) (3.3.3)
€2 klk—1 = 2k — Zk|k—1 (3.3.4)
Sk = HPy, 1 H" + Ry (3.3.5)
A= (|€z,k|k—1‘abs + 7|€z,k—1|k—1‘abs> (336)
——1 -1
= <A HPkk_1HT5k1> (3.3.7)
+1 |
sat(Lk‘k_l) = Zalhlgf < —gz’“‘kfl <1 (3.3.8)
_1 Czk,l}}k‘:—l S _1
= €, _ _
KRVoF = H+{A o Sat('f) }ez,kk—l ' (3.3.9)
Tre = Thppor + K5 (3.3.10)

Pk;|k; — (I . K]?VSFH)PM]C_]_(I o KSVSFH)T + K]fVSFRkKSVSFT (3311)

2k = h(Tkk) (3.3.12)

67



FIEREA AR S

€2 klk = 2k — Zk|k (3.3.13)
€2 kiklabs < |€k—1)k—1]abs (3.3.14)

Note that all the representative equation above are the original form of SVSF for
one-cycle of working. It is assumed that the noise statistic is predefined and kept to be
constant for the whole estimation process. This form aims to reduce the estimation error,
which is the different values of the predicted and real measurement. Accordingly, the
innovation or error measurement is then used to generate the corrective gain by using
the principle of the sliding model concept. And as the final stage of SVSF, the corrective
gain is used to update the state value and its covariance and posteriori error
measurement, which is also predefined at the beginning. However, in the real
application, it is impossible to define those parameters accurately by means they are
partially known or even unknown. It might degrade the filtering performance. For these
reasons, the adaptive SVSF algorithm is mainly concerned. The process was initially
started by reconsidering the prior information of the nonlinear dynamic system is
modeled as described in Equation (3.1). Secondly, it is considered that the process noise
Wk, measurement noise Uk and initial state vector To are assumed to be mutually
uncorrelated for any discrete time index J or k, then the mean El.] and covariance
Covl] of the process and measurement noise can be redefined in order to clearly
analogize the identity of the system.

Elwi] = qx, Cov|wy, w;] = Qrdy;
Elv] = ry, Cov|vg, v;] = Ry0y; (3.3.15)
Cov|w,vj] =0

where d refers to Kronecker delta function. The prior information above is initially
assumed to be not equals to zero. Additionally, @x and Rk are positive definite
symmetric matrices, then the MAP estimates of dk," kQk, Ri,and Xi canbe obtained
by calculating the maximum value of the following conditional probability density

function

L =p[Xy,q,7,Q, R| ZK] (3.3.16)
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where Xk = [T1,%2,.. ., @k] and Zk = [21, 22, -, 2] Next, applying the Bayes rule
and referring to the property of the conditional probability, where L is proportional to
p[Xk,q,7 Q, R, Z]/p|Zk] . Therefore, since its marginal likelihood p|Zk] plays no

role in the optimization, then
L = p[Zk| Xk, q,7, Q, R]p|Xk|q,r, Q, Rlplg,r, Q, R] (3.3.17)

where 4,7 Q, R] s regarded as the constants obtained from the prior information.

Then a posteriori distribution P[Xk; ¢, Q, R|Zk] can be calculated by multiplying
p[Zk’qv r, Qa R]p[Zk?|q’ T, Qa R] with p[ka q,T, Q? R|Z’€] as derived below

k
p[Xk‘(L ’I",Q,R} :p[mO]Hp[x2’x1717Q7R] (3318)
=1

which can be derived and expanded as follows

k

k
1 1 1 )
s Rl=———mM R — 4 _ | | m
p[l'()] p[$z|$z 1,94, ] 27T%|P0|% exXp |: 9 ||.T() w()HPO 1:| 1

=1

QP’

gl = flaen) ~ |

! [ L 2o — 21 x —— [
=————exp| — = ||xo — ZTo||p-1 X —F—F ex
27r%|P0|% Pl TRl M g
2
__Z“xz I‘Z 1 Q|Q1:|
Lol el
= exp{—
2w 2 27 2
1 k
~ 2 2
3 | oo = ol + 3 o = Flos) =l |3
1=1
1 1k
=—— | Pol " 2|Q] 2 exp{
T 2
1 k
N 2 2
~ g ol + 3 e flon) - |3
1=
(3.3.19)
k
p[Zk‘Xk7Q7T7QJR] - Hp[zi’xiura R}
i1 (3.3.20)
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which can be derived and expanded as follows

k
1
H a8 =T g o | = 3 s = i) = ol |
i= o 2w 8 R (3.3.21)
1 3

1 1 2
— g R exp = s~ ) — vl |

Therefore, by substituting both Equation (3.3.18) and (3.3.20) into Equation
(3.3.17), it yields

1 1 1
B exp L 5 — ha)-
1 1 _k

2

r||%1] x e PG
2

p[Zk‘ka q,7, Qa R]p[Xk|Q> T, Qa R]p[Q7 r, Qa R] =

1 <12
expl=3 [ llzo — ol

+Zuxz— (eir) — i}, ]}xmq,r,Q,RJ

(3.3.22)
Now supposing that
1 1 .
C=—— Dol 2 exp {Hwo - xo||?a—1} x plg, 7, Q, R] (3.3.23)
2r~ 2 2w 2 0

referring Equation (3.3.23) that the constants are obtained from the initially

predefined parameters, there Equation (3.3.21) can be compactly simplified as follows
L =CIR$1QI* exp{—2 [Z s — h(ae) — i + Z i — Fri)

q||22_1}}
(3.3.24)

Furthermore, to find the maximized parameter of the posterior distribution; firstly,
taking a logarithm as the monotonic function to simplify the calculation; secondly, find
the first derivative of L with respect to the Qk,Tk,Qk, and Rk, separately; then finally

ended by equating it with zero. These steps are organized and derived as follows
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k
k k 1 _
J =In(L) = In(C) — JIn|R| = Sn|Q| - 3 [Z 2 — h(zs) — 7|5 1+
=1

Z\m— o) —aly ]

(3.3.25)
Then Gk, Tk, Qk and Ry are respectively presented as follows
07 1L
=30 =% ;m — f(@i-x) (3.3.26)
0] 1<
E= =1 ;z — h(qk) (3.3.27)

~ 0 1 = . X . T
Qr = =% Z ($i|k - f(fﬁi—l\k) - CI) ($i|k - f(%’—l\k) - Q) (3.3.28)

R 1
Ry = E Z (21 - h(@lk) - 7“) (21 - h(@\k) — T)T (3.3.29)

i=1

The complicated multi-step smoothing term Zilk and Ti-1lk in Equation (3.3.26)

— Equation (3.3.29) might cause inefficiency of the MAP estimate, therefore to find the
conventional and efficient recursive form the simplification is needed. Note that the
recursive update process only utilizes the estimate value at time k& — 1 and k, thus the
simplification can be conducted by replacing Ti1lk with Ti-1li in Equation (3.3.26)
and Equation (3.3.28) and Tilk with Zili in Equation (3.3.26) — Equation (3.3.29).

Therefore, the suboptimal of MAP noise estimator can be expressed as follows

k
ik = —q ;z:: F(@ioa) (3.3.30)
k
P = 87’ Z (3.3.31)
A oJ 1< . . . . T
Qr = 90 — & Z (Z3i — F(@i1s) — @) (&4 — F(@i10) — @) (3.3.32)
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Ry, =

?r \

k
Z (&i1s) =) (5 — hldg) — )" (3.3.33)

As can be analyzed from the sequence equations above that the estimate value of
Ti-1i is not provided by the SVSF. Therefore, modifying the original form of SVSF is
needed to execute the noise statistics estimator effectively. The process of modifying
the SVSF can be done by calculating the one-step smoothing of the SVSF gain and its
corresponding estimate value using the fixed-point smoothing algorithm[#!}[631-167)- (see
Appendix B)

According to Appendix B, the estimate value Zili and Ti-1li canbe adopted from
Equation (B.10) and Equation (B.19), respectively. Next, to guarantee that the
recursive process and measurement noise statistics are unbiased, the modified
suboptimal MAP noise estimators are then derived refer to unbiased estimation.

First, by substituting Equation (B.11) into Equation (B.19), the general term
ili = F(%ili-1) in Equation (3.3.30) and Equation (3.3.32) can be rewritten as follows

By — f(@igi1) = K7V e i1 + g (3.334)

Similarly, replacing Zili with Equation (3.3.52), the general term <i — (i) in

Equation (3.3.31) and Equation (3.3.33) can be written as follows
zi — h(&i;) = 20 — h(@g-1 + KV e, 521) (3.3.35)
and the suboptimal MAP estimation in Equation (3.3.30) — Equation (3.3.33) can

be rearranged as follows

k
o1
= - Z KV, o1 + i1 (3.3.36)
1 k
fk = E Z(I — HK{S'VSF)Gz,i‘i_l 4+ ( (3337)
i=1
. 1
Q=1 S KV e, el KOVSET (3.3.38)
=1
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- 1
Ry =

|

k
D (I —HEP e,y qely, (I - HEFVSE)T (33.39)
1=1

Since the innovation €z.,ili—1 and its covariance ez:i\i—lezﬂi\ifl are contained in
the process and measurement noise estimator, therefore
€xili—1 = M Tiji—1) +vi — 14 (3.3.40)
and referring to state error covariance in Equation (B.20), it is obvious to have

SVSF T SVSFT T 1~SVSF"
K; ez,i\i—16z7i‘i_1K‘ :Pi|i - Pi|i—1 + Pi|i—1H K;

’ ’ 3.3.41
HESVSFP,,_, ( )

Next, considering that the expectations €z.ili—1 and ez»i\i—lezi\i—l , therefore,
Ele,i-1] =0 (3.3.42)
Ele.ifive. 1] = HPy 1H' + R; (3.3.43)
Then by substituting Equation (3.3.40) — Equation (3.3.43), it is clear to have
Elde] = an (3.3.44)

E[fy] =1k (3.3.45)

k
. 1
ElQr] = — Qr + E[E Y Pyji+ Py H'KSVSPT + HKPVS Py —
=1

FPZ-_U_lFT}
(3.3.46)
k
» 1 SVSF T T 7 -SVSFT
E[Ry] =Ry + E %ZHKi exili-16r i1 H K, —~
=1

SVSF T
HK; €z,ili—1€

z,4|i—1 ez,i‘iflezﬂi_lHTK,ESVSFTHPiliilHT
(3.3.47)

Note that 4k, Tk, Qk, and Rk are the representation of the suboptimal MAP
estimation in Equation (3.3.36) — Equation (3.3.39), thus the unbiased MAP estimation

can be summarized as follows
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k
1
U&= 7 Z L (3.3.48)
=1
1 k
=1
1 k
Qr = EZPM ~ PPy F" (3.3.50)
1=1
1 k
Ri=p 37 [2 (1= HESVSF)e o ey (1= HESVSTYT) — e ael
=1
HPi\zelHT
(3.3.51)

The time-varying noise estimator is proposed. According to the unbiased
suboptimal MAP estimator calculated above, the time-varying unbiased noise estimator

are derived as follows

. N 1
Gk = qr—1 + E(KSVSFez,Mk—l) (3.3.52)
. R 1
T =Trp—1+ z (I —HEFV e, pp—1] (3.3.53)
- k-1 1 ,
Qr = TQk—1 +1 [Pejp—1 — FPo_1jp—1 F"] (3.3.54)
- k—1 4 1
Ry ==——Fmy + 7 |2 (= BEEYVS e g rel o (1= HEFVST)T) =

ez,k|k—1€£k|k_1 + HPy 1 HT
(3.3.55)
the following alternative forms are regarded as the modified form of the time-
varying unbiased noise statistics estimator Equation (3.3.52) — Equation (3.3.55). This
method refers to the fading memory weighted exponent method and then by utilizing
the weighting coefficient dk to replace the exponential 1/k

k= Qi1 + de (K7 e, pp—1) (3.3.56)

i =ikt +di[(I— HEFVS e, ppp1] (3.3.57)
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Qv = (1 —dp)Qr—1 + dp [Prjp1 — FPyu_ 11 FT] (3.3.58)

Ry, =(1 — dy)Ry—1 + dy, [2 <(I - HKI§VSF)ez,k|k71€Zk|k—1(I - HK/??VSF)T> -

T T
€2 k|k—1€% pjk—1 T H Py, H

(3.3.59)
where the weighting coefficient dk can be calculated as follows
Bi - dkbi_l y = 177”
{ dy, = 11:;2 (3.3.60)

where b is fading factor, which is satisfied 0 <b <1 and Bi is the i-th
k

weighting factor, which is defined as i = Bi—1b and satisfied i=1 . Next, to prevent
the occurrence of filter divergence, the covariance correction step based on the
divergence suppression concept [7] is involved. First, the convergence condition is

derived referring to the covariance matching creation as described below
vl v < Str[E(vivg)] (3.3.61)
where S is an adjustable coefficient presetting which is satisfied (S = 1) and the
residual sequence Yk = k — h(&kjk-1) By executing Equation (3.3.60) if the
convergence condition Equation (4.3.61) is satisfied, Equation (3.3.56) — Equation
(3.3.59) are applied otherwise the correction method of the covariance Prjk—1 s

suggested against the divergence occurrence.

Pypi—1 = MePrjp1 (3.3.62)
where Ak is known as the adaptive weighting coefficient which is calculated based on

the fading factor formula [27,28] as summarized as follows

Cor = Uk Uk, K =1 (3.3.63)
0,k pCO'fi;)k Vi , E>1 .
Ny =tr(Cox — R)T (3.3.64)
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[V
i (3.3.66)
] Ao, Ao 21

where ¢7(- refers to the matrix trace,  is the forgetful factor satisfied (typically to be
set 0.95). Note that increasing the factor will create a smaller proportion of the
information before time k. It causes the residual vector effect to become prominent,
thus consequently the filter tracking ability will increase. Finally, the summary of
Adaptive SVSF can be presented by the following flowchart.

Qk-1

Uk Gr-1 Us

Br-1jk-1
P o ) State Prediction Measurement
k-1]k-1 Smoothed SVSF ) h(.)
Correcting
Pr_1ik
2y

T

Ry Update S

0w pdate Step

Gk

ik Pk C2in

Figure 3.3 Working Principle of Adaptive SVSF Based on MAP and Weighted

Exponent
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3.4 Designing Adaptive Smooth Variable Structure Filter
Based on Maximum Likelihood Estimation and

Expectation-Maximization Principle

For the second proposed method, the maximum likelihood estimation and
expectation-maximization are used as the batch estimation of parameters-based
adaptive filtering. Likely, the purpose of this method is to equip the Smooth Variable
Structure Filter with the recursive noise formulation corresponding to its traditional
formulation. The main objective of this approach is to let the SVSF having the ability
to estimate noise statistic and their corresponding covariance recursively.

Assuming that 0=(qr Q. R) represents the unknown noise statistic of the
nonlinear system described by Equation (3.1). Then its estimated value 6 can be

obtained by utilizing MLE as expressed as follows
oM = arg max { In [L(g,r,Q, R| Zy, Xk)}} (3.4.1)

where L(¢: 7, Q, R|Z), Xk) is the likelihood function of 6. It can be expressed
below
L(q,r,Q, R|Zy, Xy) = p(Z, Xklq, 7, Q, R) = p(Xk|q, Q. 7, R)p(Zy| Xy, q,7, Q, Rr)
(3.4.2)
For Xk = [0, --»@k] and Zk = [#1,--- 2k], Since Equation (3.1) is the first-order
of Markov process then Equation (4.4.2) can be factorized as follows
k k
p(Zi, Xil0) = plwo] [[ plwilzi-1, ¢, Q1 [ ] plzilwi, v, B] (3.4.3)
i=1 i=1
Then by considering that these knowledges comply with Gaussian distribution,

then Equation (3.4.3) can be rewritten as follows
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1 _1 1
P20 1, Q) = e IR HQUF R x oxpd — 3o
(2m)-
k
Aol 3 b e =l + 3 b
=1

(3.4.4)

taking logarithm of Equation (3.4.4), it yields

E(n+m)+n
2

(!Q)Ilwofvollp—1[ZI|wz (zi-1) — dllg- 1+Z||2z

(L (g, 7. Q. R Z, X1)] = — In(2) — 5 In(| 1))~ & In(| )~

h(xi) — rl!?ql]
(3.4.5)

In this experiment, the role of EM estimation is utilized to solve the derived MLE
solution above. It aims to approximate both process and measurement noise statistic.
Basically, there exist two main steps in EM namely expectation-based and

maximization-based solution!8!: [371: [60]. [64]. [71]. [72]

. Both are conducted sequentially. Its
process can be described as follows
Under Expectation-Based Solution (E-Step)

The expectation process can be done by first taking the conditional expectation and

sequentially equating the result to zero as shown below

k(n+m)+n 1 1
E ln[L(q,r,Q,R|Zk,Xk)]} = —% In(27) — = 1n(|P0|) — —E{on—
R k 1
doll | = m(IR) - 5 (i) - 5 Z s — f(xi)
0
(J”Q 1+ Z Iz — — 7|7 1]
(3.4.6)
Suppose that
k(n+m)+n 1 1 R
C = _%ln@ﬂ') = Sin([R]) - §E{on - :coHiol] (3.4.7)
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then Equation (3.4.6) can be re-expressed as follows

E ln[L(Q>T7Q7R|Zkan)]} =C — gln(|R|) — gln(|Q|) _ %E

k
D Nl
i=1

k
flia) — gl + Z lzi = h(x:) =l %

i=1

(3.4.8)

T —
By definition ||CLH571 =a'bla . Then by applying the identity

tr(a’a) = ”’(GGT), Equation (3.4.8) can be derived as follows
k k 1<
J=C-3 In(|R]) — 3 In(|Q|) — 3 ZE{” [Q_l(%’ — f(zic1) — @) (@i — flzim1)—
i=1
k
q)T] } - % ZE{tr [Rl(zi — h(z;) —r)(z; — h(z;) — ’I“)T] }

(3.4.9)

where J refers to an objective function of K [ln[L(q 1, Q, R Zk, X k)]]

Under Maximization-Based Solution (M-Step)
At this point the estimated noise statistic can be obtained by maximizing J. It can
be done by taking partial derivative with respect to ¢: @7 R and equating to zero as

can be calculated as follows

0 _ 0J _ 9] _, 9]

—=0,—=0,—4==0,—%=0
94 e ¥, 'R (3.4.10)
Since R and @ are positive definite matrix it can be described that
Q| = tr(Q)
R| = tr(R) (3.4.11)

For |-l and r(.) refer to the determinant and trace of matrix, respectively. Then,

it is obtained

k
. 1
dk = & Zxﬂk — fzi—k) (3.4.12)
i=1
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=g Z Zifk — "(@ijk) (3.4.13)
. 1F
Qk = E Z(xdk - f(il?z—l\k) - Q)(xz — f(xL—l\k) — q)T (3414)
=1
5 1
=% Z itk — h(@a) — ) (zip — h(@ge) — )" (3.4.15)

The complicated multi-step of smoothing term %ilk and *i-1lk in Equation
(3.4.12) — Equation (3.4.15) might cause inefficiency. For this reason, the simplification

is approached at this point. It can be done by replacing Ti-1lk with ¥i-1Ji and Tilk

with Tili,
1 k
Gk = k Z%u — f(@i—1p2) (3.4.16)
i=1
=T Z% = h(zip;) (3.4.17)
. 1FE .
Qr = Z Z(Jcm — f(xic1p) — @) (@i — f(zi15) — q) (3.4.18)
i=1
. 1F .
Ry = & Z(Zz\z — h(w;) — ) (255 — h(zs5) —7) (3.4.19)
i=1

At this point, it is clear that ¥i—1li is not provided by the classical SVSF. Hence,
SVSF was modified/improved. The process of modifying SVSF was done by
calculating the one-step smoothing of the SVSF gain and its corresponding estimate
value using the fixed-point smoothing algorithm!#!1- [631-167] (see Appendix B)

According to Appendix B, the estimate value “ili and *i—1li can be adopted from
Equation (B.10) and Equation (B.19), respectively. The simplification of the
complicated multistep smoothing in Equation (3.4.16) — Equation (3.4.19) might reduce
the optimal solution obtained by MLE-EM. For this reason, the recursive noise statistics

Equation (3.4.16) — Equation (3.4.19) are derived as follows.
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Substituting Equation (B.11) into Equation (B.19), the general term
zili = f(®ic1)i) in Equation (3.4.16) and Equation (3.4.18) can be rewritten
ziji — [(@im) = K7V e, o1 +q (3.4.20)
Then substituting Equation (4.4.39) into i — h(zi;)
Zili — h(wy)3) = 2o — h(@y-1) + KZSVSFez,i\i—I (3.4.21)

then the equivalent form of Equation (3.4.16) — Equation (3.4.19) are

k
1
=7 ) K7 e i+ (3.4.22)
i=1
1 k
P = i Z(I B HKZSVSF)ez,iIi—l +r (3.4.23)
i=1
1 g r
Qr = A Z(KiSVSFez,iu—lezmqKz'SVSF ) (3.4.24)
i=1
1 k
Ry = S (I —HEFYS e, jiovely; (I — HEZVST) (3.4.25)

=1

Since the innovation €z.ili-1 and its covariance ezvi“*lezili—l are contained in
the process and measurement noise estimator, therefore
€xiji-1 = MTiyji1) toi—r (3.4.26)
Referring to the state error covariance in Equation (B.20), then
KSVSF

KSVSFT _ _Pi|i—1 +Pi|i_1HTK£9VSFT+

T
€2,ili—1€z jli—14%; =175

SVSF
HK7" " Py (3.4.27)

Next, assuming that their expectations are

E[ez,i‘i_l] =0 (3428)
Ele.ifives 1] = HPy 1H' + R; (3.4.29)

Then by substituting Equation (3.4.26) — Equation (3.4.29) into Equation (3.4.22)

— Equation (3.4.25), the expectation of the noise statistics is
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Elqr] = qn (3.4.30)

Elry] =g (3.4.31)

k

R 1 T

E[Qi] =— Qu+E . Z(Pili Py HTKSVSE 4 HESVSFR, -
i—1

FP,_ ), ,FT)

(3.4.32)

k
1

E[Rk —R.+E|~ Z HKSVSFeue HTKSVSFT HKiSVSFeme’;F’i_
7,:1

€. i€ T HTKSVSE' HP,,;_ 1HT)]

(3.4.33)

Note that, &7k, Qk, and Rk in Equation (3.4.30) — Equation (3.4.33) are the
representation of Equation (3.4.22) — Equation (3.4.25), thus the unbiased noise statistic

properties can be calculated as follows

k
1 SVSF
k= 7 Z_: (K7V5Fe, ;) +q (3.4.34)
1 k
=2 Z (I-HEKVS e, ;+r (3.4.35)
R 1
Qr =1 D (Piioa = FPyia F7T) (3.4.36)

=1
k
1 SVSF SVSF
:EZ{ (T = HESVS e sel (1~ HESVSP)T) — e el + HPy; o H” |

(3.4.37)

Up to this point, some derived equations are presented in order to ease the adaption
process. Considering that the original Joseph covariance is able to be derived then the

alternative measurement noise statistic covariance is
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Py = (I - KSVSTH)Py, (I - KSVSTH)T 4 K5VSF RESVSE!

T T
=Pji—1 — Pi\i—lHTKiSVSF - KiSVSFHPz'u—l + KiSVSFHPm—lKiSVSF H'
K{S‘VSFRK?VSFT

(3.4.38)

Note that the trace of matrix equals to the trace of its transpose. Therefore

tr[Py] = tr[Pys 1] — 2tr[HKSVSE Py, |+ tr[KSVSF(HP,, (HT + R)KSVSE"
| ‘ ? ‘ 1 | [

(3.4.39)
Differentiating with respect to K zS VSF, then
5’;;;—% = —2[HPy;_1]" + 2KV (HP,;_ H" + R) (3.4.40)
Equating to zero, it yields
[HPi\z‘—l]T = KZ‘SVSF(HPi\i—lﬂT + R)
KPVSE = [HPy, " (HPyH" + R)™! (3.4.41)
KPVoE = Py,_1H"(HP);_1H" + R)~*
Substituting Equation (3.4.41) into Equation (3.4.38) it is obtained
Py = Py oy — HKPVSP Py
Py =(I- K{WSFH)Pz‘uﬂ G449
Suppose that the following equation is satisfied
ez,i\i—lezﬂ;\qu1 = HPz'\i—lHT +R (3.4.43)
Then by substituting Equation (3.4.43) into Equation (3.4.41), it yields
KVSFe, i vel iy =Py H” (3.4.44)

Hence, the formulation the covariance matrix of measurement noise statistic R

can be derived as follows

Ry, =

| =

k
YU —HKFS e, el (I - HKFVST)T (3.4.45)
=1
where
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(I - KVSTH)e. el (I — K7V " H)T =(HPy;_ H" + R) —2HP;;_1H" +
HEKVS AP, H"
—R—(I—HK’VSFYHP,;_,HT

(3.4.46)
1 k
B[Ry _E{EZ(I HEKSVSF)e, 1T (I — HKSVSF)T }
1=1
1 k
:E{— R— (I — HKSVSF\HP,. HT}
k; ( ) li—1
- (3.4.47)
1
_R+E{Ez (HPy_ HT — HKSVSTHP,, 1HT)}
=1
1 k
—R+E{—ZHKSVSFHP“ HT — HPy;_ 1HT}
k =1
Then it can be obtained
k
.
szkZ(I HEVSFye, el (I — HKZVSM)T+ HEPVSFHP, HT -
=1
HP,, 1"
(3.4.48)

where

(I -HK?V e, el (1 — HKPVS)' + HKPVS Py, yH" — HP);  H”

T
=e,, 26 KSVSFHGZ zeT — e, el KSVSF HT + K{S'VSFHeZ’ieziK{QVSF yT.
HK-SVSFHPH_lH —HPM_lHT
T
=e, 16 KSVSFHGZ zeT —e.. ze KSVSF HT KEVSFH€z7i€£iK{9VSF HT-

<I—K-SVSFH><HP-|Z- (HT)
=(I - K V5" H)le. el (I — KPVSPH) + HPy;_1H']

(3.4.49)

Therefore, it is clear to have

k
Z[ K2VSTH) ez el (I — KPVSTH) + HP;;_ H” (3.4.50)

?rl»—

As can be seen that Equation (3.4.37) has the complicated formulation. It might cause
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the reduction of filter accuracy. Therefore, by referring to Equation (3.4.38) — Equation
(3.4.50) above, then Equation (3.4.37) is replaced with Equation (3.4.50). Furthermore,
the time-varying noise estimator is proposed in this dissertation. According to Equation
(3.4.34), Equation (3.4.56), Equation (3.4.57), and Equation (3.4.50), then respectively

their time-varying unbiased noise properties are

ar=q+ %(KEVSFez,Z-) (3.4.51)
Fe =7+ % (I - HK?VS e, ;] (3.4.52)
Qr = k;lQ + ]i [Piu—l - FPi—l\i—lFT] (3.4.53)
Ry, = k;lRJr 2(1 HEFVS e, iel,(1 - HK?VSY) + HPy, HT|

(3.4.54)
where ¢, r, @, and R are 9k-1,7k—1, Qk-1, and Rr—_1, respectively. Now by

applying the weighted exponent [8], [14], [58], [74], where the weighting coefficient
1
di; is formulated to replace the exponential k, then the alternative form of Equation

(3.4.51) - Equation (3.4.54) become as follows

k= i1 + dip (K5 e, r) (3.4.55)
Pro=feo1 +di[(I— HERV e, ] (3.4.56)
Qr = (1 — di)Qr—1 + di[Puj—1 — FPy_1 1 F7T] (3.4.57)

Ry = (1 —dg)Ry—1 + dp(I — HKZVST) [ez,kezk(f — HEZVSF) + HPyj, H”

(3.4.58)

where the residual measurement €2k = €z.klk—1 and the weighting coefficient is

expressed as follows

B; = dkbifl , 1=1,...,n
dy = S5 (3.4.59)

where b is fading factor satisfied 0 < b < 1 and Bi s the i-th weighting factor
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k

> B

defined as Bi = fi—1b and satisfied i=1 . Referring to the definition mentioned by
Equation (4.2), both @ and R should be positive definite symmetric matrix.
Unfortunately, the complicated formulation shown in Equation (3.4.58) will present the
negative definite matrix for the measurement noise statistic covariance. In order to
depress this possibility, the alternative formulation adopted from the innovation

- [21], [571, [59], [61]

covariance estimator concept!®! was used. It can be presented below.

Assuming that the innovation covariance is expressed as follows

N
1 1
ICE, = N Zez,k—jezkfj =ICE,_1+ N ez,kezk — 6z,k—j€£k—j}
j=0 (3.4.60)

As described by Equation (3.4.60), the window size N plays a role of achieving
an IC'E accuracy. N is able to prevent the occurrence of the biased situationin IC'E
by setting it to small value for the fast change of the dynamic system. Besides that, it is
also able to improve the stability of the unbiased ICE by setting it to large value for
the slow change of the dynamic system. Simply, the adjustment of window size is
strongly depending on the characteristic of dynamic system which can empirically to
be adjusted. Then, it is noted that the noise estimator is stable when the following
definition is satisfied.

tr(ICEy) < k.tr(S) (3.4.61)

where « is areserve factor that satisfies < > 1 and ¢7(-) refers to trace of matrix.
The stability equation expressed by Equation (3.4.61) shows that x also plays an
important role as a threshold to know the incorrectness of the noise statistic when the
measurement outliers occurs. By means, it is an issue when the ratio between tr(ICE)
and 17(5) is out of the threshold value # at current step k. Therefore, an additional

of the innovation covariance estimation will obviously be keeping the stability of

T
estimated value @ and R by isolating the current innovation covariance ©zk€zk

T
with its calculated value. Then by replacing €2%€z.k with /CEk, Equation (3.4.58)

86



FIEREA AR S

becomes
Ry =(1—dp)Ry1 +dp(I - HKVSE)[ICE (I - HK]VSY) + HPy,  H|
(3.4.62)

At the last, the working principle of the adaptive SVSF can be graphically summarized

as shown in Figure 3.4 below

Xk—1|k-1

State Prediction Measurement

Smoothed SVSF £(.) h(.)

pk—llk—l

Zg

Xklk P €2k

Figure 3.4 Working Principle of Adaptive SVSF Based on MLE and ICE
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Chapter IV Applying Proposed Method for 2D

Feature-Based SLAM Algorithm

This chapter presents the process of constructing the feature-based SLAM
algorithm. All filtering methods presented in the previous chapter are applied in both
simulation and real application. This implementation requires the motion model used
in the prediction step, and the measurement model used to predict the measurement and
calculate the innovation error. Moreover, the Jacobian matrixes of the state, control, and
measurement needs to define. There are two types of experiment in this dissertation
which are based on a realistic environment-based simulation and real-time-based

simulation.

Observed/ Stored
Landmark

Feature Management
Laser Scanner Feature Extraction

.. Data Association
(distance, bearing) (Visible Landmark) ot

Correcting the Robot Correcting Matched
Pose Landmark Location

Odometry
Measurement Unit Prediction Step Correction Step
(Control Command)

Prediction Step

Figure 4.1 Flowchart of Feature-Based SLAM Algorithm

4.1 Simulation-Based Experiment

The simulation is realistically conducted by referring to the parameter of
Turtlebot2 which equipped by the laser scanner. The robot moves depend on the
different velocity of the right and wheels. It is henceforth called a control command

which can be measured utilizing the odometry sensor. Naturally, the robot generates its
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path after executing all the control command with assumption both the system and
control are not perturbated by any small noise. The robot is analogized to sense and
measure the features in every step of state transition. Considering that the location of
all the features are known by the user, therefore, the corresponding is known. Once, the
reference is available, the robot is assumed to inaccurately moves because of some
factors and the measurement is noisy due to incorrect robot base and unavoidable error
perturbating the distance and bearing data. Consequently, the filtering-based SLAM
algorithm is used to overcomes these issues by estimating the robot path and features

coordinate in the global environment.

4.1.1 Robot Configuration and Motion Model

Assuming that the spatial and orientation of robot pose is denoted as follows

Lk
TRE = | Yrk (4.1.1.1)
er,k
Where k represents the discrete time index. Since the robot configuration and motion
principle is graphically depicted in Figure 4.1, thus, the next position of the robot can

be known once the current pose of the robot and control command are given.

YA

Yr

Yr

=Y

O Xy x'

Figure 4.2 Kinematic Configuration of The Robot

Figure 4.1 represents the pose of the robot on the 2D planar environment as the
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global frame representation. It refers to the distance of the separated wheels W and
the length between the robot's outer wheel £ to the point of the turn causing angle C.
As can be seen from Figure 4.1, the next location is achieved after the right v and left

speed Vi are propagated. In which they are the perturbated velocity caused by the turn

and move factor ¢ = [C1 C2]T.

{vr=C1ur+<2(ur_ul) (4.1.1.2)

v = Gug + Ga(ur —w)

where, the right Ur and left % are the true control command given by the used.

Now by assuming that the factors are random and unknown. Thus, there will be two

different types of motion classified based on the diversity of speed. In which, this factor
will make the robot move with or without a turn.

Then, by assuming that the right and left velocity are the same, the robot will move

without changing its heading. Mathematically, it is expressed as follows

A A A
Lrk Trk—1 COS(er,k—1)

zp= |yt | = | Ui 1| +or | sin(02,_,) (4.1.1.3)
Hﬁk 9£k—1 0

Contrary, when the right and left velocity are not same, in a certain angle the robot
will turn depending on this diversity. Therefore, the analogy of this motion can be

expressed as follows

- W | | )
g o | (00 ) o s
TR Yrk Yrk—1| T (R + ) (—cos (ka_l + a) + cos(a))
65 9B 2 ,
Tvk T‘,k}—l
«o
(4.1.1.4)

Where A is for the first case and B is for the second case. It is noted that the motion
model is used to predict the robot state. Therefore, the conditional probability
P (TRE|TRE-1,Uk) is now satisfied. Moreover, the Jacobian matrices which are

calculated based on the partial derivative of function f{.) with respect to the state and
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control are described as follows (see Appendix).

O, ks 0%, i Oz, i
agr,k—l 8(%7‘,1@—1 agr,k—l
_ Yr, k Yr, k Yr, k
Fo=\oos7 oprs 900 (4.1.1.5)
Tk T,k 607‘4, k

0Tr k-1  OYr k-1 O0rk_1
As known that there are two different motion model in this case, therefore, the
specified Jacobiana Fs is presented as follows.

1 0 (R + %) (cos(0r -1 + ) — cos(0, —1))

FA=10 1 (R+%) (sin(0r -1+ a) — sin(0,5-1)) (4.1.1.6)
0 0 1
1 0 —u.sin(0pp_1)
FP=10 1 w.cos(brr1) (4.1.1.7)
0 0 1

Up to this point, the state and its covariance can be calculated as follows
vk = f(vr—1,ur) (4.1.1.8)
P, = F,P,_ FT + Q4 (4.1.1.9)

Where f(.) represents the motion model in Equation (4.1.1.3) — Equation (4.1.1.4).

Meanwhile @k is calculated using the following equation.

2
Qk:Fc[o(-)l GQ}FCT (4.1.1.10)

‘s

where 01 and Or are direct variable obtained based on the relative effect and e
refers to the Jacobian matrix calculated by taking the partial derivative of function f{.)

with respect to the control (see Appendix).

8xr,k 8xr,k

88ul aaur

_ Yr k Yr k
Fp= |Sok Shok (4.1.1.11)

00, 1, 00, 1,

dul 8ur

Remembering that the motion model in this case is depend on the different velocity of
right and left, therefore, the construction of Fc are two. For the first £ when the
velocities are different all the completeness in Equation 4.1.6 is sequentially presented

as follows
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0%y WR . ) Uy + Uy ,
ou; N (ur —ug)? (Sm(g’"’k’l a Szn(&T’k_l))> N mCOS(an,l)
4.1.1.12)
3yr,k WR Uy + Uy .
du (uy —w)? (_608(8;"”“_1 i cos(er’k_1>)> N mtgm(ehk_l)
4.1.1.13)
Orp _ 1 4.1.1.14
ok = (4.1.1.14)
amnk WR . . Ur + W )
dur — (uy —w)? (Sm(g;”k_l - Sm(er’k*l)ﬁ " mcoswhk_l)
4.1.1.15)
ayr’ WR . Up + U .
B =y = (OO i) g0 )
(4.1.1.16)
O _ 1 4.1.1.17
ou, W #1117

Meanwhile, the right v and left speed Vi are the same, then all the part of the partial

derivative of f(.) with respect to the control are sequentially described as follows

8;;;k - % (COS(Gnk—l) T %smwr,k_n) (4.1.1.18)
?ﬁ - % (sin(0r0-1) + -cos(0,-1))) (4.1.1.19)
660;}k =0 (4.1.1.20)
653 B % (COS(QTH) - %Si”(@:k—l)) (4.1.1.21)
%y—;;k = % (Sm(@r,kq) + %cos(@nk,l)) (4.1.1.22)
ii:f =0 (4.1.1.23)
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4.1.2 Measurement Model

As commonly known that the state vector is the SLAM perception not only
contains the robot pose but also all the feature location. Therefore, its representation is
modelled as follows.

E
Ty = | , (4.1.2.1)

Tp k
where TR,k represents the robot pose variable at time & in previous discussion.
It consists both the spatial location and its heading or orientation. Meanwhile xZLk
gives the information of the i-th landmark coordinate consisting both the coordinate
respect to x-axes Tk and y-axes ik for i=1,2,...,....,N =1, N attime k. Itis
noted that in the simulation-based experiment this set of measurement is determined
when the robot senses the corresponding feature location in the environment using the

measurement model as discussed below. Therefore, the set of observed landmarks is

described as follows

roa=1 4.12.2)

N
Lk

N
L Yk

Where N is the number of landmarks available on the global coordinate system as
the point-based map. Using the certain method of adding feature to state vector, the

composed state vector can be fully presented as follows
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Ty k
Yr k

ok = | Uik (4.1.2.3)

- s

i
Where L.k can be calculated using the direct-point-based observation as expressed
below. The landmark detection is illustrated as shown in Figure 4.3.

YA

XLx

3

Figure 4.3 Landmark Detection

R T . : .
where Zis = [Tis Yis]" refers to the position relative to the robot in local frame,

and d or dis refers to the laser scanner displacement. Meanwhile, a single
measurement consists the value of zi. Therefore, given the current pose of the robot
TR, the location of the laser scanner in Equation (4.1.2.4), the direct-based observation

model can be mathematically described in Equation (4.1.2.5).

T Ty cos(0,
REEC

. 4124
Yis Yr Sln(er) ( )
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Sequentially, once the single landmark is found after applying the feature extraction
algorithm, its values L = [*L2 Lyl is then used to produce the distance 91 and

bearing L. It can be calculated as follows

[ 5,@] \/(x;k - xzs,k>2 + (yfk - yl57k>2

2 i (4.1.2.5)
B atan? <w> — 0,k

Ly — Lisk

Now, in order to make this observation satisfy the probabilistic model, the noise is
assumed to always follows the measurement. It perturbates the measured distance 91

and bearing SL. Then, by supposing that these small noises are denoted as

r=|rs TB]T, which corresponding to the distance 0z and bearing AL, the final

measurement model returns the measured landmark Zs.

[52]+[r‘5] 41.2.6
2 = :
BL T8 ( )

Based on Equation (4.1.2.6), the predicted measurement and innovation sequence error

are satisfied.
Zeik—1 = h(Trjp—1) 4.1.2.7)
€2 klk—1 = 2k — Zk|k—1 (4.1.2.8)

Where A(.) represents the measurement model and Zklk-1 s predicted measurement in
Equation (4.1.2.6) and 2k is true corresponding measurement. The corresponding

covariance of the predicted measurement is calculated using the following equation.

o2 885; 865;; 865,@
_ k_ _ |9z Yr.k Or k
H = Drnn | 268 o8i 08! (4.1.2.9)

awr,k ayr,k 8'9'r,k

Where H is partial derivative of h(.) with respect to the state (see Appendix).

—Az  —Ay dis (Axsin 0, 1) — Aycos(6,
7\/A§I \/5( (0rx) (6r.1)) (4.1.2.10)

- % (Azcos(0, 1) + Aysin(0yx)) — 1

H =

= |E%

where
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Ax = Tk — Tis (41211)
AY =Yk — Yis (4.1.2.12)
q= (T — T15)° + (Y1 — Yis)” (4.1.2.13)

4.2 Experiment Based on The Real-Time Application

In order to present more extensive and reliable validation, the proposed method is
also practically implemented to solve the real-time application. It employs the real
experiment data provided by University of Sydney. Accordingly, this subsection
presents a step of constructing the algorithm based on all the filtering-based strategies
in the previous Chapter. The real data is adopted from the real vehicle that was moved
around the Victoria Park, Sydney, Australia. This vehicle is utilized to perceive the
possible information of the park by using the Laser Scanner. Based on this information,
the goal is to construct the feature-based map. Besides that, this map is generated
together with the vehicle path. For this reason, the additional exteroceptive, odometry
sensor, was also equipped to the vehicle. It is used to know the linear and angular
velocity per time-duration. The odometry data is then used to process the filter as the
path estimator. The GPS was also completed to collect the coordinate of vehicle pose.
Inaccuracy of GPS is motivation to get the estimate values. Therefore, the feature-based
SLAM is designed, in which it requires the motion model, observation model, Jacobian

calculation, and Data Association.
4.2.1 Motion Model based on Linear and Angular Velocity

Different from the one used in the verification based on simulation above, the
motion model is designed based on the following vehicle. This modelling refers to the
real experiment conducted by Dr. Jose Guivant from the University of Sydney. The

configuration of this vehicle is shown in Figure 4.4

96



FIEREA AR S

Encoder Laser and GPS

(a) (b)
Figure 4.4 Kinematic Configuration (a) and Real Appearance of Vehicle (b)
Where the parameters of this vehicle is given as follows
L=283,H=076b=05a=378

By using the data provided by the odometer and GPS, the user can easily to know the
robot pose. However, both types of data are bad and imprecise due to the present of
noise. Additionally, the data of measurement of laser scanner is also noisy. Therefore,
as the objective of this experiment, it is quite difficult to determine the accurate pose of
vehicle and location of the feature. Accordingly, by this analogy the SLAM algorithm
is applied to address this kind of issue. Initially, the reference trajectory is generated
from the robot path based on GPS and odometer. And based on these benchmarks, the
use of filtering method is approached. A filtering-SLAM algorithm predict and update
the pose of the robot as well as construct the landmark-based map, simultaneously. The
prediction requires the motion model as the state transition method caused by the
control command. For this reason, the following motion model is presented.

[znk} [aznkl + AT (v..cos(0; k1)

TR = =

)
Yr.k Yr.k—1 + AT(vc.sin(Qr,k,l))
gr,k 0

— Zetan(O, ;—1)(a.sin(0r x—1)) + b.cos(0r —1))
+ 4. tan(0y k1) (a.cos(Or k1)) — b.sin(0r 1))
k-1 + AT tan(a)

(4.2.1.1)
It is noted that this modelling system is also provided together with the dataset. Next,

the Jacobian matric F can be described as follows.
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5f 10 —AT(ve.cos(8rx-1)) + % tana(a.cos(0y k1)) — b.sin(0rx—1))
— = |01 AT(vc.sin(0rr-1)) — % .tana(a.sin(0yk—1)) + b.cos(0rr—1))
%z oo | 1 | |

(4.2.1.2)
Similar to the previous discussion, up to this point, the prediction step for the state
and its corresponding covariance used for all algorithms presented in Chapter 3 is

satisfied.
4.2.2 Measurement Model for Second Experiment

The measurement is intended to predict the location of the landmark, when the
current pose of the robot is given together with set of sensed/detected landmark in the
global environment. It is also the initiated step before calculating the innovation
sequence error and gain of filtering. The model of this observation can be illustrated in

Figure below.

Figure 4.5 Landmark Detection
All newly observed landmarks are combined together as the state vector. Therefore,
given the current pose of vehicle and raw data of laser scanner, the feature extraction
and data association are conducted before it is proceeded to the step of measurement.

In this experiment, the feature or landmarks are the tree trunks. Based on the raw
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sensing data, it is detected using the feature extractor. It is noted that this algorithm is
also provided together with the dataset. Then, the extracted or detected landmark is

measure as the prediction step. It is done by using the following measurement model.

[zr] _ [ V(L —z.)2 + (yr — yr)?

2 atcm(%) —~Op 1+ 2 (4.2.2.1)

Since the measurement is predicted, then the innovation sequence error and gain of
filtering-based SLAM algorithm can be determined. However, the calculation also
requires the Jacobian matrix H. It is done by taking partial derivative of h(.) with respect

to the state as can be presented as follows

PONRI o B e >
=5 = {55}?} = [5%572391}] (4.2.2.2)
For
% = %[—Am, —Ay, 0] (4.2.2.3)
% = %[—Ay, —Az,—1] (4.2.2.4)
Az = (v — 2,), Ay = [yr — 3o, A = /Az2 + Ay? (4.2.2.5)

Where {Zv:¥0,600} and {#r.¥r} are robot and landmark pose, respectively.
Therefore, the partial derivative with respect to the state (including the landmark pose)

1S

oh 1

5_5 — Z[_Ax, —Ay,0,0,0,...,Az,Ay,0,0,...0] (4.2.2.6)
T

dhg Ay Ax Ay Ax

= ez L 0.0 =5 250,00 (4.2.2.7)

4.2.3 Data Association

Although the feature extraction is already given, in this experiment still requires
the data association. It is used to find the correspondence between the detected feature

and the previously observed landmark. Naturally, the data association is a step used to
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check whether the newly observed landmark is available in the state vector or not.
Therefore, if it is not stored the location of the feature is added into the state vector.
Otherwise, the existing one is chosen as the base. The data association is important
before conducting a measurement step. There are some techniques used, but the
common nearest neighbor is approached in this experiment. The reason is, the
landmarks have a large distance to each other, therefore, it can be separated or uniquely
identified easily. The nearest neighbor firstly sets the associated gate to restrict the
possible number of decisions to be made, and the associated gate 's preliminary screen
makes the echoes a candidate. The Associated Door is a subspace in the tracking field.
The center is located in the forecast of the tracked target position. The size of the
configuration will ensure that the appropriate likelihood of an echo can be obtained to
some degree. The nearest neighbor method always selects a point trace that falls into
the association gate and is closest to the tracked target position. Usually, it is judged by
the statistical distance. Through analysis, it is not difficult to find that the nearest
neighbor data association is primarily appropriate for tracking domain targets, but only
for a limited number of target instances or target tracking of a sparse area only. Defining

the statistical distance: Hypothesis before the first k-fold scan, we have identified the
N path. New results for the first k cycles are Z}‘ forj = 1,2,...,N. In the association

gate of track i the difference vector between the observed j and track i is defined as the
diversity of the measured value and the predicted value. The residual error is given as

follows
eij(k) = 2 — h(i],_,) 4.23.1)

Where /() is the measurement model. And by referring to the definition this residual

has the covariance §;;. Therefore, the mentioned statistical distance is
dij = [ei; (k)TSiyleij]”Q (4.2.3.2)
It is noted that d;; is known as the Mahalanobis distance of the invention, taking into

account the uncertainty of the expected calculation. Based on this judgement, then by
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setting a parameter y, to specifies the gate, the decision is made based on the

following equation
i < v, (4.2.3.3)

2
It means that if the norm vector of Mahalanobis distance dij is smaller than the

threshold Vg, the associated landmark is selected. Contrary, the newly observed
landmark is added as the state vector with appropriate index. Finally, by referring to all
the designed filtering in Chapter 3 and sequent discussion in this chapter, the feature-

based SLAM algorithm is generally given as follows.

Algorithm Feature-Based SLAM Algorithm

Require: Initial State Estimate, Covariance, Convergence Rate, and Initial Error
1 loop

2 Prediction Step: If proprioceptive data is available
3 Propagate the state estimate

4 Compute the Jacobian of £{.)

5: Propagate the covariance relative to the state

6 Update: If the observation data is available

7 Compute the innovation sequence error

8 Calculate Gain

9 Update the State, and Covariance

10: Compute the noise statistic

I1:  end loop

This algorithm is applicable for all adaptive filters that have been described in
Chapter 3. For the record, the implementation using EKF-SLAM and SVSF-SLAM
stage 10 is not required. This confirms that while adaptive filtering can recursively
update all associated noise properties, conventional methods cannot. As a further note,
the parameters of the EKF-SLAM algorithm do not need to have an initial definition of

the convergence rate as is required in SVSF-SLAM.
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Chapter V Experiment, Result, and Discussion

This chapter presents the verification and validation of the proposed method that is
implemented for solving feature-based SLAM problem both in simulation-case and
real-environment. These steps are initiated by comparing some existing algorithms and
the proposed method, ASVSF-SLAM algorithm. As the objective of the SLAM
problem, all the presented algorithms are used to estimate the truth robot path and
features location. For the real environment, the reference trajectory and features
location are provided by the GPS data adopted from the popular Victoria Park dataset.
Meanwhile, the simulation case uses the generated path and measurement by assuming
there is no noise following the control and measurement. Up to this point, there will be
the real/provided data and estimated data given by all the filtering-based algorithms.
For this reason, some parameters are used to compared all mentioned algorithms, such
as the RMSE, prediction and update time, detected landmark, and Monte Carlo
simulation. Based on these parameters, the effectiveness and performances are

respectively verified and evaluated.

5.1 Realistic-Simulation of Feature-Based SLAM

For the simulation, the robot trajectory and features are designed. They are
considered as the reference or the true data unfollowed by the noise. The second
assumption is that a known-locating robot is equipped with the odometer and laser
scanner used to respectively detect the wheel revolution and measure the feature. As
the tradition, a robot moves when it executes the control command given by the users.
However, all the control commands are perturbated with random-small noise to either
right and left wheels in every step. Since, this command is velocity of the right and left
wheel, the robot executes the noisy velocities which makes the generated path diverges
from the truth. Additionally, the random error is also assumed to disturb the given

distance and bearing data when the robot senses the location of the robot. By this

102



FIEREA AR S

analogy, the velocity-based motion model (in Chapter 2) and direct-based measurement
are used. It is clear to see, in order to apply the motion model, both the distance between
the left and right wheel, and displacement of the laser scanner should be given. Then,
by adopting the parameters from a real robot platform, Turtlebot 2, the parameterization
for the simulation case is presented in Table 5.1 below.

Table 5.1 Parameterization of All the Algorithms

No Parameter Value
1 W (length of body) 33 cm
2 djs (displacement of laser scanner) 14 cm

Up to this point, all the complement initially requires to execute the motion model
are satisfied. As the user, the control commands are known and sent to the robot to make
robot moves. Suppose that the robot is initially placed on the global map and there is
no noise follows the command, the reference trajectory and map are assumed as

depicted by the following figure.

Reference

300
——REFERENCE PATH
* REFERENCE MAP

200 -

100

300 I I I
-100 0 100 200 300 400 500

Figure 5.1 Reference Path and Map

The initial pose of the robot is assumed to be

1,0 0 (5.1.1)
TRO = |Yro| = 3(5)
07",0 ﬁ

Now, assuming that the robot strongly believes about its initial position, the initial

covariance of this robot pose can be defined as
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(5.1.2)

Besides that, the initial noise statistics should be defined in order to applied all
the algorithms. There are two simulations with different initial additive noise (as can be
seen in Table 5.1) in this verification process. It is intended to validate the consistency
and stability of the proposed method when the noise is increased.

Table 5.2 The Defined Noise Statistic for Two Different Simulation Parameter

Num. Sim o Qo 7o Ry Y €2,0
15t Sim. 317 [032 o0 ] 6r17|[022 0 ]| 1.5¢ [[00]
03, 27] | oz 2] :
180 3 180 om” | -2
180 i 180 |
2nd Sim, 571’ [0.42 0O 6r17| [052 0 ]| 1.5¢ [[00]"
04, 27] | fos. 2] :
180l || , 57T 180 o
180 | i 180 |

Up to this point, the performance of the former EKF and alternative SVSF-based
SLAM algorithm can be compared. The comparison uses the Root Mean Square Error

as the term to evaluate the convergence of the proposed method.

- SLAM Algorithm Based on EKF and SVSF

SLAM Algorithm Based on EKF and SVSF

300 * . —— REFERENCE PATH
* —— REFERENCE PATH N * REFERENCE MAP

* REFERENCE MAP ¢ . . ~—— EKF-SLAM PATH

—— EKF-SLAM PATH . . * * EKF-SLAM MAP

* EKF-SLAM MAP * —— SVSF-SLAM PATH
+ —— SVSF-SLAM PATH 200 * SVSF-SLAM PATH
* SVSF-SLAM PATH .

.

y[m]
y [m)

300 300
-100 0 100 200 300 400 500 100 0 100 200 300 400 500

x [m] x[m]

Figure 5.2 Performance of EKF and SVSF-based SLAM algorithm for 1% Simulation
(Left) and 2" Simulation (Right)

According to Figure 5.2, it can be declared that both optimal and robust filtering
method can successfully estimate the robot path and map. This graphical result also

proves that the SVSF-SLAM, can be alternatively replace the EKF-SLAM algorithm.
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Moreover, in order to see clearly the EKF-SLAM performance, it is directly compared
with its advanced, EKF-MAPWE-SLAM algorithm and AEKF-MLEEM-SLAM
algorithm. They are compared in terms of RMSE for their Estimated Path Coordinate
(EPC) and Estimated Map Coordinated. Remembering, that they are initially simulated
referring to all initialization and parameterization shown in Table 5.1. Then, to prove
that both adaptive EKF-SLAMSs are convergence, the result is presented with the

graphical performance as shown in Figure 5.3.

SLAM Algorithm Based on AEKF-MAP-WE and AEKF-MLE-EM
300 SLAM Algorithm Based on AEKF-MAP-WE and AEKF-MLE-EM

- g —— REFERENGCE PATH
*+ REFERENCE MAP
—— EKF-SLAM PATH -
+ ™.+ |+ EKF-SLAMMAP
AEKF-MAP-WE-SLAM PATH
AEKF-MAP-WE-SLAM MAP 200 .
—— AEKF-MLE-EM-SLAM PATH
* AEKF-MLE-EM-SLAM MAP .
s * .

——REFERENCE PATH
* REFERENCE MAP
N EKF-SLAM PATH
* EKF-SLAM MAP
AEKF-MAP-WE-SLAM PATH
AEKF-MAP-WE-SLAM MAP
—— AEKF-MLE-EM-SLAM PATH
* AEKF-MLE-EM-SLAM MAP
*
¥

y [m)

: -100 0 100 200 300 400 500 -100 ] 100 200 300 400 500
x[m] x[m]

Figure 5.3 Performance of the EKF, AEKF-MAPWE and AEKF-MLEEM-SLAM
Algorithm for 1% Simulation (left) and 2" Simulation (right).

Graphically, Figure 5.3 shows that by involving adaptive filtering method, the
performance of EKF-SLAM improves. It is proven from smaller gap between the
estimated and reference path. The consistency and stability of adaptive filtering method
can also be evaluated by this figure. In which, there is no much effect to the AEKF-
SLAM algorithm when the noise statistic is increased. However, it is hard to see clearly
the quality of estimated path and map by only referring to Figure 5.3. It is especially
for the performance of adaptive EKF in estimating map. For this reason, the evaluation
is also conducted by analyzing the comparison of the estimated path and map in term

of RMSE.
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Figure 5.4 Estimated Path of EKF-SLAM, AEKF-MAPWE-SLAM, and AEKF-
MLEEM-SLAM algorithm for 1% Simulation (Top) and 2™ Simulation (Bottom)

Figure 5.4 depicts the different RMSE values of the estimated path coordinate,

including the robot's spatial coordinate [, 91" and the robot heading 6. According to

Figure 5.4, it can be now seen clearly the diversity between the EKF-SLAM and its
advanced algorithm. Based on the estimated path for x-coordinate both the Adaptive
EKF using MAP-WE with a divergence suppression method, and Adaptive EKF using
MLE-EM with an Innovation Covariance Estimation are better than EKF-SLAM. It is
shown from the smaller values generated with respect to the time step in Figure 5.4.

The estimated path coordinate for ¥ and 6-coordinate given by the adaptive filter are
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also better than EKF-SLAM. Besides that, the stability and consistency of the adaptive

EKF-SLAM algorithms are also proven. It can be seen from their performance (2"

Simulation), which is stable even when the initial noise statistic is increased.
Furthermore, the performance is also evaluated based on the value of RMSE for

the estimated map coordinate. It can be seen from Figure 5.5
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Figure 5.5 Estimated Map of EKF-SLAM, AEKF-MAPWE-SLAM, and AEKF-
MLEEM-SLAM algorithm for 1% Simulation (Top) and 2" Simulation (Bottom)

Figure 5.5 depicts the performance of EKF-SLAM, AEKF-MAPWE-SLAM with
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divergence suppression method, and AEKF-MLEEM-SLAM with Innovation
Covariance Estimate (ICE). According to the 1% Simulation, it might be hard to see the
performance of adaptive EKF in estimating the map. But the significant difference can
be evaluated from the 2" Simulation. Therefore, it can now be stated that the adaptive
EKF-SLAM algorithm significantly improves its predecessor with the guaranteed
stability and consistency under invariant additive noise.

Additionally, the performance of adaptive SVSF-based SLAM algorithms is also
validated. Like the previous manner, this validation involves the RMSE to evaluate its
capability to estimate the robot path and map. First of all, the convergence of all
algorithm based on Adaptive SVSF is evaluated. It can be done by seeing the graphical

performance in estimating the path and map for both 1% and 2" simulation.

o SLAM Algorithm Based on ASVSF-MAP-WE and ASVSF-MLE-EM o SLAM Algorithm Based on ASVSF-MAP-WE and ASVSF-MLE-EM
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Figure 5.6 Performance Comparison between SVSF-SLAM, ASVSF-MAPWE and
ASVSF-MLEEM-SLAM Algorithm for 1 Simulation (Left) and 2" Simulation
(Right)

Figure 5.6 illustrates the difference in performance between SVSF-SLAM,
ASVSF-MAPWE-SLAM, and ASVSF-MLEEM-SLAM algorithm. Thus, it can be
declared that the adaptive version significantly improves the performance of SVSF-
SLAM algorithm when the small additive noise statistics are predetermined in Table
5.1. The consistency and stability are also guaranteed. It can be seen from Figure 5.6

which shows that the increment of the initially predetermined noise statistic gives no
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significant effect to the performance of all adaptive SVSF. Although, the effectiveness
of ASVSF-SLAM algorithm in estimating the robot path can be easily evaluated from
Figure 5.6, but its capability to estimate the map is difficult to be evaluated. Therefore,

the graph of RMSE values for the estimated path and map coordinate is presented.
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Figure 5.7 Estimated Path Coordinate of SVSF-SLAM, ASVSF-MAPWE and
ASVSF-MLEEM-SLAM Algorithm for the 1% Simulation (Top) and 2" Simulation
(Bottom)

Figure 5.7 depicts the performance of SVSF-SLAM, ASVSF-MAPWE, and
ASVSF-MLEEM-SLAM Algorithm for both estimating the spatial coordinate of a
wheeled mobile robot and its heading direction in radian. According to Figure 5.7, it is

clearly to see that all the adaptive filter relative to SVSF successfully improve the
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SVSF-SLAM algorithm. It is proven based on better RMSE values for all the
benchmarks, in which all the RMSE values are smaller than the SVSF-SLAM algorithm.
This result proves that the previous statement that is stated based on the graphical
performance (Figure 5.6). According to two different simulations in Figure 5.7, the
consistency and stability of Adaptive SVSF are also satisfied. Next, to see the diversity
of adaptive SVSF-SLAM performance, their RMSEs of estimated map coordinate are

also presented as can be seen from Figure 5.8.
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Figure 5.8 Estimated Map Coordinate of SVSF-SLAM, ASVSF-MAPWE and
ASVSF-MLEEM-SLAM Algorithm for 1%t Simulation (Top) and 2™ Simulation
(Bottom)

According to Figure 5.8, it can be declared that the adaptive SVSF-SLAM
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algorithm is better than the SVSF-SLAM algorithm in approximating the landmark in
two different simulation. It can be seen from its performance in estimating the y-
coordinate of all the landmark. However, similar to Figure 5.5, the performance of
SLAM algorithm in estimating the x-coordinate of the landmark is difficult to be
evaluated. For this reason, Table 5.3 and Table 5.4 are presented to respectively show
the different SLAM algorithm’s performance in term of RMSE for Estimated Path and
Estimated Map Coordinate.
Table 5.3 RMSE values of The Feature-Based SLAM algorithm based on EKF,
AEKF-MAPWE, AEKF-MLEEM, SVSF, ASVSF-MAPWE, and ASVSF-MLEEM

(1% Simulation)

Estimated Path Estimated Map

No Name of Algorithm Coordinate Coordinate

X y 6 X y
1. |[EKF-SLAM 9.6867 | 14.980 | 0.1240 | 14.8801 | 18.8703
2. |AEKF-MAPWE-SLAM 5.8164 | 5.958410.1214 | 13.3618 | 16.1547
3. |AEKF-MLEEM-SLAM 5.1243 1 4.0567 | 0.1247 | 19.3317 | 23.1409
4. [SVSF-SLAM 5.9065|10.04510.1099 | 2.0095 | 2.2145
5. |ASVSF-MAPWE-SLAM 3.0666 | 2.3328 | 0.0985 | 11.4657 | 11.0790
6. |ASVSF-MLEEM-SLAM 3.233712.5043 1 0.0985| 10.8512 | 11.1995

Table 5.3 presents the different values of RMSE for the estimated path coordinate
and the estimated map coordinate for all the algorithm in the 1% Simulation. According
to Table 5.3, two adaptive EKF-SLAM algorithms give significant improvement to the
EKF-SLAM algorithm. The RMSE reduction shows it to almost all benchmark. This
values also highlight the previous analysis which is conducted based on Figure 5.2 —
Figure 5.4. Besides that, by comparing to its former version, all adaptive SVSF-SLAM
algorithm also shows great result indicated by smaller RMSE values for all the
benchmark.

Table 5.4 RMSE values of The Feature-Based SLAM algorithm based on EKF,
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AEKF-MAPWE, AEKF-MLEEM, SVSF, ASVSF-MAPWE, and ASVSF-MLEEM

(2" Simulation)

Estimated Path Coordinate Estlmate.d Map
No| Name of Algorithm Coordinate
X y 0 X y
1. |EKF-SLAM 10.666 | 16.333 | 0.7913 | 27.7747 | 32.0915

AEKF-MAPWE-SLAM 5.1149 | 3.4892 | 0.1265 | 20.0421 | 24.2682
AEKF-MLEEM-SLAM 5.1421 | 3.5478 |0.1262 | 19.7067 | 23.8953
SVSF-SLAM 5.5823 | 9.7952 |0.1045| 17.1811 | 14.4686
ASVSF-MAPWE-SLAM | 4.6835 | 2.3872 | 0.0989 | 13.2414 | 11.5277
ASVSF-MLEEM-SLAM 4.6835 | 2.3807 |0.0987| 15.4925 | 13.5943

SN DA B B I

Table 5.4 shows that all the proposed algorithms are effectively solving the problem
of feature-based SLAM. According to Table 5.3 and Table 5.4, the AEKF-SLAM
algorithm shows better improvement to its conventional algorithm, EKF-SLAM
algorithm. The effectiveness of using an adaptive approach to the traditional filtering is
also proven by all the performance of ASVSF-SLAM in this 2" Simulation.

Based on Table 5.3 and Table 5.4, it is clear to declare that the AEKF and ASVSF
can be alternatively used for feature-based SLAM algorithm. The noisy process and
measurement can be represented based on how large the initial additive noise statistic.
Accordingly, the AEKF-SLAM algorithms can be applied when the uncertainty is
average, and the ASVSF-SLAM can be used for either condition of the uncertainty is
significant or not. Furthermore, referring to the Bayes-Rules, which composed by
Maximum A Posterior (MAP) and Maximum Likelihood Estimation (MLE), there
should be different for the optimal and robust result of adaptive by using the MAP and
MLE, since the prior knowledge is assumed to be available. However, they can be
characteristically different since the supportable methods are respectively adopted from
the divergence suppression method and Innovation Covariance Estimation. Regarding
the discussion in Chapter 3, the divergence suppression method is intended to correct

the predicted covariance matrix about the state in the prediction step. The derived
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formulation does not have any effect because of the gain. Meanwhile, the use of
Innovation Covariance Estimation is applied once the corrective gain is calculated, and
it replaces the covariance of innovation error. Therefore, it is not surprising when the
result of the AEKF-MLEEM-SLAM is good and better for the AEFK-MAPWE-SLAM,;
the ASVSF-MLEEM is not better than the ASVSF-MAPWE-SLAM algorithm (see
Table 5.3 and Table 5.4). The reason is that there is a different formulation of corrective
gain between EKF and SVSF, which of course directly affected due to the change of
additive noise statistic. However, the designed adaptive filtering for both EKF and
SVSF is successfully designed. Additionally, the proposed method in this dissertation
also successfully validated in terms of effectiveness and stability. By means, since the
conventional algorithm, EKF or SVSF-SLAM, does not have the ability to respond to
the system through the recursive noise statistic, their proposed method does have.
Obviously, it overcomes the issues of keeping noise statistic to be same whole the

estimation process is not recommended

5.2 Verification using the Victoria Dataset

Besides comparing the proposed algorithm in the simulation case, its effectiveness
and performance are also verified and evaluated for the real application. In which all
the algorithms are applied to solve the feature-based SLAM problem of vehicle in
Victoria Park. The data of this experiment was collected by Nebot (2009) at the
Australian Centre for Field Robotics, Sydney. It was done using a vehicle (a truck)
equipped with a laser scanner, odometer, and GPS sensor. The vehicle moves in 4
kilometers along the park over a total time about 26 minutes. The trees are detected
during the vehicle is being moved based on the measurement in each step. The local
minima detection is used as the algorithm for extracting the feature in the scanning data.
This tree extraction function is provided together with the dataset compatible with
Matlab. The Victoria Park consists of some trees separated with large distance which

makes the common data association applicable for this experiment. In this dissertation,
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the experiment is conducted on a Dual-Core Intel Core i5-2.3 GHz.

The interest is that this dataset has a bad quality on the odometer data with much
unexpected perturbations and the truth given by GPS’s data seems not accurate (see
Figure 5.9). The trees in the park are distinctive features detectable by the laser scanner,
which makes this dataset becomes the popular option to validate any feature-based
SLAM algorithm. Different from the above simulation, this validation approaches the
second creation of the motion model, measurement and all the relative Jacobians in
Chapter 4. At first, in order to implement all algorithms introduced in Chapter 3, the
following characteristic are defined as the parameterization step.

Table 5.5 The initial noise statistic

Y €20 qo QO ro Ry
0.8 [0] 0.02 0.022 0 0.05 0.052 0
VT T 2
180 0 T30 180 180

Where gy contains the small additive noise following the linear velocity (m/s)
and angular velocity (rad/s), and Qo refers to covariance matrix of the control.
Meanwhile, 7y is small additive noise following the range (m) and bearing (rad) of laser
scanner measurement, and Ry refers to the covariance matrix relative to the
measurement. It is noted that these parameters will be kept to be constant by EKF-
SLAM and SVSF-SLAM algorithm, but they are recursively updated by AEKF-SLAM
and ASVSF-SLAM algorithm. Due to the closed similarity between AEKF-MAP-
SLAM and AEKF-MLE-SLAM algorithm and ASVSF-MAP-SLAM and ASVSF-
MLE-SLAM, this experiment only considers AEKF-MLE-SLAM and ASVSF-MLE-

SLAM. In this case, the truth of vehicle path can be seen from the following figure.
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Figure 5.9 GPS-generated Vehicle Path

With a task to locate the robot pose and the landmark position in Victoria Park,
all the feature-based algorithms are applied. This implementation is can be illustrated
in Figure 5.10. The number of landmarks is reduced by using the feature elimination
method based on the negative evidence information. It aims to determine more reliable

representation after the data association is applied.

- Different Performance of Feature-Based Algorithm

—— EKF-SLAM
SVSF-SLAM

—— AEKF-SLAM

—— ASVSF-SLAM
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Figure 5.10 Performance of Different SLAM algorithm
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As can be seen, that the proposed method gives significant improvement
compared to the conventional algorithm, EKF-SLAM. It can be validated according to
the smoother and better performance in estimating the robot path. As the second effort
to validate the effectiveness of the proposed method, the obtained number of landmarks

is also analyzed. Graphically, it can be seen as follows.

1200 —

—— Number of landmarks (EKF)

—— Number of landmarks (SVSF)
Number of landmarks (AEKF)

—— Number of landmarks (ASVSF)

1000 —

800 |

Number of landmarks
2
8

400 |

| |
0
0 200 400 600 800 1000 1200 1400 1600
time

Figure 5.11 Number of The Stored Landmarks in 1600 (s)

Figure 5.11 illustrates the number of stored landmarks after executing all the
control command. The proposed method is able to store less compared to the
conventional one after applying the data association. In which the collected coordinates
are kept and add new landmark. Additionally, the computational cost containing the
prediction and update stage is also evaluated in this verification. Theoretically, this
comparison lies on the different of update time process only. It is because all the
algorithms perform the same prediction step. The following figure represents the

duration of all the algorithms in predicting and updating the state (robot pose and map).
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Update Time of Different Algorithms
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Figure 5.12 Update Time

5.3 Consistency Validation of The Proposed Algorithm

In all the theoretical convergence properties used in the last section, it is
assumed that the Jacobians are evaluated at the true observation point and at the true
landmark location. However, in fact of SLAM application both the true of robot pose
and landmark position are not available/visible. Accordingly, the Jacobians must be
measured at the approximate values. It is well known that this kind of linearization error
can be incorrect. For this reason, the traditional metrics used to measure the efficiency
of the estimation process, such as root mean squared (RMS) error (as conducted above),
do not include consistency information. It is because they do not take into account the
uncertainty returned by the filter. In order to provide more extensive verification and
cover the lack of validation, the both the average of RMSE and Normalized
Approximation Error Squared (NEES) are used to evaluate the all algorithms under
repeated runs of Monte Carlo Simulation.

The NEES can be applied by measuring the mean squared value of the error that
is normalized through the covariance matrix of all filtering-based strategy (e.g. EKF,

AEKEF, SVSF, or ASVSF). The NEES can be calculated when the density of probability
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is unknown but the availability of ground truth is known. This type of term is commonly
used to characterize whether the filtering is consistence or not. The average NEES can
be computed based on determination of the average values of Mahalonobis distance of

the estimator.
—_— _ o TP—l _ A
€k = ($k ZEk|k) k|k_1($k $k|k—1) (5.2.1)

The filter is consistence if the following properties are satisfied.

#(k|k) = z(k) — & (k|k) (52.2)

e(k) = Z(k|k)" P(k|k)~ (k| k) (5.2.3)

Linguistically, it means that the filter is unbiased and the estimated covariance
is matched to its theoretical one. Therefore, by the evaluation in term of average NEES
can also prove whether the designed filter in this dissertation is unbiased or not. Under
the assumption that the filter is consistent and roughly linear-Gaussian, the Mahalanobis
complies with the chi-square distribution with the dimension dim(x;). Consequently,
the average value of €(k) tends towards the state dimension as N approaches infinity.

Ele(k)] = n, (5.2.4)

As well-known that the average NEES can also be implemented based on the real-
time application (single-online run, N=1) and simulation (multiple N-runs or Monte
Carlo Simulation). Given N runs and the average error of estimator, then the average

NEES is computed as follows

e(k) = x 2N 1€ (k) (5.2.5)

Given a hypothesis of a consistent linear-Gaussian filter, V€ (k) has y? density
with N.dim(x;) degree of freedom. Therefore, for 3-dimentional of robot state, the
95% probability concentration region for €(k) is bounded by the interval [0.1198,
9.7218] for real-time application (N=1). Meanwhile, in the case of simulation with

constant velocity and known number and corresponding landmark, the probability
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concentration region is bounded by the interval [2.6701 3.3491]. In which the interval
is also known as acceptance region which used to evaluate the average NEES. Filter is
considered to be consistent, if its average NEES falls into this region. Contrary, the filter
is optimistic and conservative if its average NEES rises the upper bound and lower

bound, respectively.

Different RMSE of Estimated Spatial

25—

3
T

@
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Different RMSE of Estimated Heading

Heading RMSE (rad)

Time (sec)

Figure 5.13 Average RMSE of different algorithm under Monte Carlo Simulation with
N=1

It is clear shown in Figure 5.13, that the proposed method significantly improves
the existing methods. The SVSF-SLAM algorithm can also be alternatively used to

replace the EKF-SLAM. This result is detail presented in Table 5.3.
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Different NEES of Estimated Pose
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Figure 5.14 Average NEES for Robot Pose of Different Algorithms
Figure 5.14 presents the graphic of average NEES for each step performing the

SLAM-algorithm. However, the validation cannot be easily conducted only by referring
to this result. Accordingly, each performance is separately validated by involving the
firstly mentioned interval, [0.1198, 9.7218]. It is computed based on the N-runs=1 of

Monte Carlo Simulation.
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Figure 5.15 Average NEES of Robot Pose for EKF-SLAM Algorithm with two-sided
95% region (N=1)
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Figure 5.16 NEES’s Average of Robot Pose for SVSF-SLAM Algorithm
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Figure 5.17 NEES’s Average of Robot’s Pose for AEKF-SLAM Algorithm
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Figure 5.18 NEES’s Average of Robot Pose for ASVSF-SLAM Algorithm
Figure 5.15 — Figure 5.18 shows the average NEES of Robot Pose for EKF-

SLAM, AEKF-SLAM, SVSF-SLAM, and ASVSF-SLAM algorithm. According to the
graphical representations with cyan-color bounds as the benchmark to evaluate, in short
or single-run Monte Carlo Simulation, only the proposed method (adaptive filtering)
remains consistent. Contrary, based on Figure 5.15 and Figure 5.17, both the EKF-
SLAM and SVSF-SLAM show their inconsistency in estimating the robot pose.
However, indicated by the values which frequently rises the upper bound, the SVSF-
SLAM algorithm is better than EKF-SLAM algorithm. Therefore, based on the real-
time verification, our hypothesis is satisfied and true. IN which, the robustness offered
by SVSF makes SVSF can replace the EKF-SLAM algorithm. Moreover, the adaptive
filtering method can be alternatively used to improve the consistency of any filtering
since it is designed with checking its optimal solution with an unbiased estimator (see
Chapter 3). The following Table is presented in order to clearly compare all the

algorithm.

122



FIEREA AR S

Table 5.6 Comparative Result Based on Average RMSE and NEES for different

algorithm
Metrics EKF- SVSF- AEKF- ASVSF-
SLAM SLAM SLAM SLAM
NEES Robot Pose 11.3658 | 10.6287 0.7887 0.5948
RMSE Robot Pose 5.1078 4.5829 2.6711 1.9346
RMSE Robot Heading | 0.0803 0.0820 0.0551 0.0438
RMSE of Landmark | 81.5989 | 80.0655 77.1436 74.5689

According to Table 5.6 above, all the statement declared previously is proven. All
the average NEES analysis is correct that the adaptive filtering is consistent compared
with the conventional one. Table 5.6 also presents the average RMSE over the Monte
Carlo Simulation. Based on these average values, the optimality of the proposed method,
ASVSF-SLAM is also proven. It is shown from all its values which are lower than the

other algorithms.

5.4 Verification Based on The Simulation with Fixed Velocity

and Known Landmark in the Global Map

If the previous analysis is conducted referring to the average NEES of robot pose
when N=1 in the real application, Victoria Park-based SLAM problem, the following
verification is intended to ensure that the consistency of the proposed method also
appropriate for long-duration of Monte Carlo Simulation. For this case, it is assumed
that the objective of all the algorithm presented in Chapter 3 is to estimate the following

reference path and map.

Robot trsiec‘lo!xand landmarks
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Figure 5.19 Reference Trajectory with 20 Static Features
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Knowing the initial position of the robot in the global environment, the robot
moves based on the constant linear 0.2 m/s and angular velocity 0.025 rad/s. Referring
to the motion model and measurement model designed in the second creation of Chapter
4, the robot moves repeatedly over times of 500. It is evaluated under the Monte Carlo
Simulation with N=200. Therefore, the acceptance region is bounded by the interval
[2.6701 3.3491]. In other to illustrates that the simulation is realistic, the process is
assumed to not accurate caused by the noise, the odometer used to sense the rotated
wheels are also noisy, and the measurement sensor is noisy. For this reason, the
characteristic noise statistics are defined in this simulation; q=[0.0071;0.0283]
corresponding to the linear (m/s) and angular velocity (rad/s) and Q=[0.0071"2 0;0
0.0283"2] corresponding to its covariance. Meanwhile, the observation noise
perturbating the measurement of z is defined r=[1;10] relative to the distance (m) and
bearing (deg), and R = [12 0; 0 107t/180%]. Theoretically, these noises are recursively
updated when implementing the EKF-SLAM and SVSF-SLAM. Moreover, the rest
parameter such as y and initial error are defined as the same used in the previous
verification. Contrary, they are kept constant/invariant. Based on this parameterization

the following result is presented.
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Figure 5.20 Average RMSE of Robot Pose and Heading under Monte Carlo
Simulation with N=200
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Based on the result depicted in Figure 5.20, the proposed methods present a better
performance and accuracy of estimating the robot pose and heading. It is proven and
indicated by the smaller values for both the average RMSE whole the step. Although,
it again validates the effectiveness and optimality of ASVSF-SLAM algorithm, its
consistency cannot be evaluated and analyzed according to this result. For this reason,

the corresponding average NEES is presented as follows.

Different NEES of Estimated Pose

Robot pose NEES
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Figure 5.21 Average NEES of Robot Pose and Heading under Monte Carlo
Simulation with N=200

Figure 5.21 shows that by bounding the graphical result with the determined
acceptance regions, all the algorithms are relatively consistent except the EKF-SLAM

algorithm. Like the previous way, the separately determined results are presented.
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Figure 5.22 Average NEES given by the EKF-SLAM algorithm under the
Monte Carlo Simulation with N=200
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Figure 5.23 Average NEES given by the SVSF-SLAM algorithm under the
Monte Carlo Simulation with N=200
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Figure 5.24 Average NEES given by the AEKF-SLAM algorithm under the
Monte Carlo Simulation with N=200
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Figure 5.25 Average NEES given by the ASVSF-SLAM algorithm under the
Monte Carlo Simulation with N=200
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Now, it clear to declare that the consistency of all algorithm except the EKF-
SLAM are guaranteed. To more extensive present the proof of the effectiveness,
accuracy, consistency of the proposed algorithm, Table 5.7 is presented.

Table 5.7 Average RMSE and NEES of all algorithms

Metrics EKF- SVSF- AEKF- | ASVSF-
SLAM SLAM SLAM SLAM
NEES Robot Pose 3.7163 2.9782 3.2315 3.1853

RMSE Robot Pose 0.4449 | 0.8020 | 0.4217 | 0.9254
RMSE Robot Heading 0.4449 | 0.0762 | 0.4217 | 0.9254
NEES of Landmark 23166 | 1.9010 1.8357 1.7499
RMSE of Landmark 0.4807 | 0.4650 | 0.4467 | 0.4208
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Chapter VI Conclusion

6.1 Summary

The popular filtering method commonly used to solve the feature-based SLAM
algorithm is the Extended Kalman Filter. Alternatively, the role of robust filtering type,
Smooth Variable Structure Filter, can replace EKF as the main state and parameter
estimation. However, the original formulation of Extended Kalman Filter and Smooth
Variable Structure is not completed with an ability to recursively estimate the noise
statistic of the process and measurement as well as their corresponding covariance.
Consequently, when they are predetermined and kept to be constant throughout the
estimation process, the filter has a big possibility leading to the divergence condition
respecting the original reference. For this reason, certain modification is strongly
recommended to be concerned before using an either optimal and robust estimator.
There are many types of modifications, as mentioned and introduced in the previous
chapter. And the most popular one is tuning the corrective gain through the adaptive
noise statistic, which is termed-well as an adaptive filter. Herein this dissertation, four
different adaptive filters distinguished by the presence of guarantor techniques,
Divergence Suppression Method and Innovation Covariance Estimator, are discussed,
aiming to either improve EKF and SVSF. It is separately done by involving the
Maximum A Posterior together with Weighted Exponent and Maximum Likelihood
Estimator together with Expectation-Maximum Creation. The detailed derivation
obtaining the adaptive form of EKF and SVSF is discussed. Furthermore, by adopting
some completeness used for the feature-based SLAM problem, differently, there are
converted to be a SLAM algorithm. Furthermore, they are realistically simulated with
the presence of small additive noise and their corresponding covariance following the
process and measurement. Of course, this analogy is intended to satisfy the probability
condition caused by uncertainty. By using RMSE for the estimated path coordinate and

the estimated map coordinated, different SLAM algorithm is compared and evaluated.
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Accordingly, as the proposed strategies, both EKF and SVSF equipped with an adaptive
manner to estimate the noise statistic, shows better and significant improvement than
their conventional algorithm. Based on the lastly previous chapter, their effectiveness
in term of accuracy and consistency are validated. The contribution containing in this

dissertation can be repeatedly presented as follows.

6.2 Future Research

As mentioned earlier in the previous Chapters, theoretically, the Smooth Variable
Structure Filter can be combined with any filtering method such as Extended Kalman
Filter, Quadrature Kalman Filter, Cubature Kalman Filter, etc., based on the smoothing
boundary layer. Essentially, its mechanism allows selecting the correspondingly
appropriated gain by initially comparing it with the boundary limit variable. By this
statement, the author plans to combine the Adaptive Smooth Variable Structure Filter
and Adaptive Extended Kalman Filter. Besides that, the use of different stability and
robust guarantor makes the adaptive filter with divergence suppression methods, and
innovation covariance estimation is characteristically different. Therefore, mixing both
adaptive filters can give a hybrid formulation, which, of course, improves the
conventional filter. As the second plan, the author plans to design the hybrid filter based
on Extended Kalman Filter and Smooth Variable Structure Filter. Afterward, the results
are applied to alternatively and effectively solving the feature-based SLAM problem of

wheeled mobile robot.
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Appendix

A. Smoothed Formulation of EKF based on one-step smoothing point

Thip—1 = [(Tr—1jh—1,Uk—1) + Qr—1 (A.1)
Zelk—1 = h(Tppp—1) + 7k (A.2)

€5 klk—1 = 2k — Zk|k—1 (A.3)

S = HPyp1H" + Ry (A.4)

K =Py H" ()" (A.5)

T 1k = Tp1jk—1 + Kex gp—1 (A.6)

Referring to Equation (A.1) — Equation (A.6), the estimate value of Tk-1lk can
now replace the term of Th-1]k—1 in the original form of EKF, then the rest forms of

smoothed EKF are chained as follows

Tjp—1 = [(Tp—1jk> Uk—1) + qr—1 (A.7)
Zejk—1 = M@ppp—1) + 7k (A.8)
€rklk—1 = 2k — Zk|k—1 (A.9)

Sk = HPy, 1 H" + Ry, (A.10)

Ky = Py H"(Sk) ™" (A.11)
Tpik = Tpjp—1 + Krez kp—1 (A.12)
Prjr = Prjp—1 (I — Ky Hy,) (A.13)

Alternatively, it can be done using, the RTS smoother technique as presented below.

Given the Kalman Gain in Equation (A.11), the smoothed forms are
Thin = Trie + Mi(Trjn—1 — Trjp—1) (A.13)
Pyjn = Prji + Mi(Pyjn—1 — Prjp—1) M, (A.13)

Where
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M, ka\k—1FkTP13|ﬂk71 (A.13)

Fy=F - K H (A.13)

B. Smoothed Formulation of SVSF based on one-step smoothing point

-1 = f(@r-1p—1) + 1 (B.1)
Pyg—1=FPy 11 FT 4+ Qr1 (B.2)
Zrlk—1 = W(Zpp—1) + 7k (B.3)
€2 klk—1 = 2k — Zk|k—1 (B.4)
A= (1€ klk—1labs + Vles k—1)k—1]abs) (B.5)
Sy = HPyy 1 HT + Ry (B.6)

1 -1
vy, = (A HPk|k_1HTSk1> (B.7)

1, vte, g1 >1
sat[t) ™ (&, pp—1] = Ve, g1, —1 < o1 <1 (B.3)
—1 ., e, g1 <1

—1
KRVl = H+{A ° Sat[l/f_léz,mk—l]}[éz,k\k—l]_l (B.9)

" X SVSF
Tp 1k = Tp_1pp—1 + K77 € ke (B.10)

then considering that the prior state Th—1k replaces the term of ¥k—1/k—1 in the

normal SVSF, the rest part of modified SVSF are chained as follows

Trik—1 = f(Trp—1k) + @1 (B.11)
Zrjk—1 = M(@pjp—1) + 7 (B.12)

€z klk—1 = 2k — Zkk—1 (B.13)

Sk :Hpk|k—1HT+Rk (B.14)

A= (lesrik—1labs + Y€z k—11k—1]abs) (B.15)
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-1
——1
Vi = (A HPkk_lHTS,;1> (B.16)

1, v e g >1
satlp e 1) =8 Y epeo1) » —l<UTlEe o <1 (B.17)
-1, ¢l e <1

——1 _
K;VSE = H* {A o sat W_lez,kuc—l]} e ' (B.18)

Epp = Trpp-1 + Kp ¥ es ki1 (B.19)

Pk‘k — (I o HK]‘gSVSF)e@k‘kflPk“cfl(I o HKEVSF)T + K];?VSFR]CKEVSFT
(B.20)
exklk = 2k — M(Tg|k) (B.21)

Alternatively, these smoothed forms can be compactly computed by referring to RTS

principle. Given the SVSF Gain in Equation (A.18) and recalled as K, the smoothed

forms are
Thin = Thje + Mr(Tkjn—1 — Trjp—1) (B.22)
Pyjn = Pt + My (Pyjn—1 — Prjp—1) M, (B.23)
Where
My, = Prp—1 Fy Pl (B.24)
Fr—F— KuH (B.25)
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C. The Foundation of the Feature-Based SLAM Algorithms

In the SLAM application, the full state vector is
TR,k
Ty = | (C.1)
TLk
where TR,k represents the robot pose variable at time & consisting both the spatial

location and its heading or orientation

Ly k

TRE = | Yrk (C.2)
er,k

i
Meanwhile *L.k gives the information of the i-th landmark coordinate consisting both

the coordinate respect to x-axes *i.k and y-axes Y.k for t=1,2,...,...., N =1, N

at time k

The=| (C3)

N
Ly k

N
L Y1 k.

Where N is the number of landmark available on the global coordinate system as the
point-based map. Thus, Equation C.1 becomes

Tr k
Yr.k
er,k

1
L.k

ze = | Yk (C.4)
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Suppose every landmark is collected with a signature s, the full state vector becomes

Tr = | Sik (C.5)

s s
RS

=
==

Equation (C.5) shows that the full state vector has dimension of (3N +3) for N is the
number of landmark available in the map. For this reason, the dimension of its
covariance is (3N +3) x (3N +3) _ Furthermore, as the common way in designing
the feature-SLAM algorithm, the initial pose is assumed to be origin. It means that the
. . . . T — [O 0 O]T . .
robot pose has information of its coordinate *R.0 Y as well as it considers
that there is no landmark seen at the time k& = 0. Therefore, it is obvious to have an
T
assumption that ¥L,0 = [0,0,0,...,...,0,0,0]" Therefore, the initial setup of the

full state vector is
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0

0

0

0

0

TR0 0

Ty = [:UL,o] = (C.6)

0

0

[ 0]

Considering that N is infinity when the robot pose does not see any landmark yet in

the origin pose, it is clear to describe its covariance £ as

0 0 0 oo ... o
0 0 0 oo ... o
0 0 0 oo ... o
00 00 00 00 ... OO
00 00 oo o0 o0 |
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Prerequisites for Prediction Step in Optimal and Robust Filter
Next, it assumes, the robot is moves from the initial pose ¥R.k=0 to the next coordinate
TR.k=k+1 since the robot execute the control command %k, Then by involving the

motion model and execute the control command, the next pose of robot is
[ (R4 ) (sin (051 + @) + sin(@) ]
(R+ %) (—cos (0r k-1 + ) + cos(a))
a
0
0
0
e (C3)

o

Since the command has the same values of velocity, the another model of C.8 is

[u,.cos (0,5-1)

Uy sin (0, x—1)
0
0
0
0

T = Tp_1 + (C.9)

0
0

L 0 -

Compactly, it can be respectively modeled as

(R+ %) (sin (Or k-1 + @) — sin(0, k1)
vp = xr1 + AL | (R+ ) (—cos (Br k-1 + ) + cos(0px-1)) (C.10)
o

and

urcos (0 x—-1)
xy =21 + AL |upsin (0,5-1) (C.11)
0
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For Az is satistying the dimension of (BN +3). It is expressed as

1 00 0 ... 0

0 0 0 ...0

0 1 0 ... 0 (C.12)

—~—
3N Columns

1
A, = [0 0

Clearly, Equation (C.1) — Equation (C.12) are the foundation to apply the prediction
state.

v = f(Tr—1,ur) (C.13)
Assuming that all the landmarks are static, and no affected by the control command.

The motion model is expressed as follows

Ty 1 (R + %) (sin (Orx—1 + a)) — sin(brk—1)
o= |Yrk—1| + | (R+ %) (—cos (0rp—1 + @) + cos(0r. 1)) (C.14)
97",]{71 «
Ty -1 ur-cos (0 1—1)
Tp = |Yrk—1| + |ursin (0r 1) (C.15)
er,k—l 0

It shows that only three variables in the old state are changed after including the motion
model. Accordingly, the Jacobian matrices of J() with respect to the state Fs and

with respect to the control command ¢ can respectively be calculated as

ax’r‘,k axr,k axr,k

8557‘,7971 8gr,k71 3gnk71

_ Yr, k Yr k Yr k
Fs = Oy —1  OYrr—1  O0rk_1 C.16)

897‘77‘6 697‘,k 807‘,k

8$r,k—1 ayr,k—l ae'r‘,k—l

8£Uhk 0:874’1@

887“ 881”

_ Yr k Yr,k

Fe= 1% ou (C.17)
00, 1, 00, 1
ouy Ou,

Referring to Equation (C.14) and Equation (C.15), it is clear to have

14 , .
roa =i (Rt 2y ) (sin @it ) = sinff)  (€18)
w
Yrk = Yrk—1 + (R + ?) <_COS (9T,k*1 + Oé) + 608(07’7]?*1)) (C19)
Hr,k = er,k—l + (C20)
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and applying both partial derivative of function f(-) with respect to the stateas well as
with respect to the control, two possible corresponding results classified based on

similarity of right wheel and left wheel velocity are described as follows

1 0 (R + %) (cos(0r—1 + a) — cos(0y —1))
FA=10 1 (R+ %) (sin(0 + a) — sin(6 ) C.21
s 2 rk—1 rk—1 ( . )
0 O 1

It is noted that Equation (C.21) represents the partial derivative of f() with respect to

A .
the state when Ur 7 Ui, denoted by Fg Contrary, when U, = u;, the notation

B ) ) )
becomes Fs . It aims to differs the formulation based on the random movement caused

by the control command. The randomness is because of the presence of unpredictable
noise following the turn and move as the influence factor. From Equation (C.21) can

seen that the entries on this matrix only involves the cause of coordinate changer.

B . A .
Therefore, £s’ should not be much difference to £s . In order to calculate it, let’s

observe the cause of motion for Tr.k by knowledge that & =0 when Ur = Ui (see
Chapter 2).
w

(R + o (cos(0r -1 + ) — cos(0y1—1)

(C.22)

=R (cos(0y -1+ &) —cos(0, -1)) + — (cos(0r k-1 + ) — cos(0y k-1

Since a = 0, Equation (C.22) seems to return zero. It causes obtaining the partial
derivative of J(-) with respect to the state when % = u; becomes unobservable. For
this reason, all the expandable variables in Equation (C.22) is observed. It leads to the

original formulation of . In which it is the variable representing the ratio of % and
a,  «. For this statement it is clear to have a definition that once o = 0, R is

infinity. Therefore, to calculate (C.22) as the effort find the entire in matrix FeB , the

limit approach is involved. It can be clearly derived as follows

) cos(Or -1+ &) — cos(0y p—1)
lim uy .
a—0 (e

(C.23)

Using I'hopital French mathematician, it is clear to get
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in (0, 1
lim oy . _sm( ko1t @)

a—0 1

= —uy . sin(frk—1) (C.24)

(R + %) (sin(0r k-1 + ) — sin(0, x—1))

Similarly, by recalling for u,r = uy, it

. . . . B
gives the element of matrix which equation to %! - cos(Or, k1), Therefore, Fs™ can be

described as follows

1 0 —u.sin(0p 1)
FB =10 1 w.cos(0rp1) (C.25)
0 0 1

Up to this point, the Jacobian matrix of f (") relative to the state has been calculated.
Next, let’s calculate the partial derivative of f(.) with respect to the control.
Unfortunately, by referring to the definition of finding the partial derivative of all the
element is respected to Ur and i, and there is no such visible %i or . For this reason,
all the derived equation from the motion model in Chapter 2 is recalled. They are

chained as follows

u =ax R (C.26)
ur = ax*x (W + R) (C.27)
ur —u; = a(R) —a(W + R) = aW (C.28)
a = Hpt (C.29)
U
R=—
5 (C.30)

From Equation (C.26) — Equation (C.30), the following equation can be augmented.

Uy —Ug

o= Y (C.31)
w
R=" (C.32)
Uy — UL
R+K— wW w W ou+ C33
2w, —W 2 2 u, —u; (C.33)

Now Equation (C.13) can be expanded as
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T -1 (R+ %) (Si” <9;,k—1> - Sm(er,k—ﬁ)
T = g::j + (R + %) <—cos <9;jl> + cos(@r,k_1)> (C.34)

And referring to Equation (C.26) — Equation (C.33), all the element of the robot pose

Tr.k are
Trjo = Tt + @Z * Zi) (sin (61) = sin(Brs—1))  (€39)
Yrk = Yrk-1+ (%Z - Zi) (—cos (1) +eosOrn1))  (C36)
Ork = 0y 51 (C.37)

’

Once k-1 = 0rk—1+Q then the partial derivative of f() with respect to the

control command can respectively be calculated as follows

a;;lk _ (uTVK}ZzV (sin(0;7k_1 - sin(&,k—l))) - ﬁcos(9;7k_l) (C.38)
85;; _ (urmi]zl)Q (—008(9;,,,671 +COS(9r,k—1))> - m%n(ﬁ;?k (C.39)
ag;}k = _% (C.40)
65;? = _% <5i”<9},k_1 - Sm(9r,k—1))> + ﬁcos(&;ﬁk_ (C.41)
%ylzrk - _% <_003(9},k—1 + COS<9r,k—1))> + ﬁsm(ﬁ;’k (C.42)
a;ur’f - (C.43)

Note that Equation (C.38) — Equation (C.43) represent all the element on the partial

.. . . A
derivative of /(-) with respect to the control command, when %r 7 Ui, Obviously, £

is calculated. By the same way and referring to Equation (C.14), the chained

formulation of all the element for £ cB can also calculated as

axr,k . 1

up .
0 2 (cos(0r7k_1) + Wlsm(@,ﬂ,k_l)> (C.44)
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85/;lk _ % (Sin(‘gr,k—l> + %cos(@nk_l))) (C.45)
a;;f =0 (C.46)
3;3;:: = % (Cos(er,k—l> - %sin(@nk_l)) (C.47)
aay;;k _ % (sin(0r 1) + f-cos(6r-1) ) (C.48)
(?J;k =0 (C.49)

Clearly, once Equation (C.12) is discussed, the first step in prediction stage is satisfied.
Furthermore, the second step in prediction step is discussed and presented here. It is
started by recalling the definition of covariance prediction step after the state is
predicted. The form is

Py = F,P,_1F] + Qx (C.50)
By considering that the model of covariance is used to represent the uncertainty about
its corresponding state vector, Equation (C.50) is completed with Qk, which is the
random effect caused by the turn and move factor. It is recalled as

Qi = F. [UO? 0?2} FT (C.51)
where 01 and O are direct variable obtained based on the relative effect. Now, by
assuming that the number of landmark N = 2, then it is clear to have the partial

derivate with respect to the state as

(1 0 5=~ 0000 00
0 1 52~ 0000 0 0
00 1 000000
00 0 100000
Fs=1o0 0 010000 (C.52)
00 0 001000
00 0 000100
00 0 000010
00 0 0000 0 1

In order to make Equation (5.1.52) to be compact formulation, it can also be modeled

as
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{100000000]T0032f;’f1[1000000001
Fg=I+{0 10000 00 0] |00 5|10 1000000 0 (C53)
[001000000J00"0“[001000000J

By knowing that since N = 2, A is the following form

10 00 0 0O OO
A, =10 1 0 0 0 0 0O O O (C.54)
0 01 00 0O0O0O0

Consequentially, the compact model of partial derivative with respect to the state £'s

step can further be calculated as

0 0 Qink

F,=1+AT i | 4

s T {0 0 5@;;jTJ T ((155)
00 0

8xr$ 8ynk

Note that 00y k1 and 00y 1 are non-zero elements calculated earlier under

condition of Ur = u; or Ur 7# Ui, and Fs is now representing all the partial derivative
of f(.) with respect to the control with N is the number landmark. The command -
and i only influence the first three variable on the state transition. It gives assumption
that all the partial derivate related to the landmark coordinate are now zero. Then, by

considering that the number of landmarks is IV = 2, it is obvious to have

'er,k awnk'
ouy ou,

81/7:, k 81/1‘, k
ouy Ou,
00, 1, 00, 1
ouy Ou,
0 0
F.. = (C.56)

o O O O O
O O O O O

0120

2
Next, by knowing that [ 0 UJ is concerned as random effect caused by the turn and

move factor, then @« in both optimal and robust prediction stage becomes
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0%, 1 0xr 1] Fo0x, k 0%y 1 ] T
Ou; Ou, Ouy Ou,
Oyre  OYrk OYrk  OYrk
ouy ou, ouy ou,
00k 00,k 90y 00y
Ouy ou, ouy ou,
2 0 0 2 0 0
ka_Fce |:O(-)l OE:| Fg;_ 0 0 |:O(-)l O('),,%:| 0 0 (C57)
0 0 0 0
0 0 0 0
0 0 0 0
| 0 0 | | 0 0 |
[+ + % 0 0 0 0 0 O]
*x x x 0 0 0 0 0 O
*x x x 0 0 0 0 0 O
o2 0 0O 000 0 0 0 O0O0
Qk—Fce[Ol Q]FC{— 00 0O0O0UO0UO0O0O0 (C.58)
T 0O 000 0 0 O0 0O
0O 000 0 0 O0 0 O
0O 00O OO0 O0O0O0
0 00 000O0 0 0

Where Fee is extended Fe with a consideration of landmark coordinate. Meanwhile

(3 X 3) non zeros matrix indicated by element x in Equation (5.1.58) is

8$T=k E)xm (93310,1C 8:c7‘,k T
S S 3
2 Juy 0uy ) Oy, ou,
Qui=F 0 0 FT = |5 5 s| = | Uk ek | |01 0 Orr  OYri
0.k = L 0 0-2 c T oy 0u, 0 02 Oy 0u,
T x % % 00, 00,1 1106, 00k
oy, 0uy Oy, Ouy
(C.59)

Where Q0.k is Qr when Fe is calculated both relative to %r 7 % and Ur = U; . As

can be seen, Equation (C.59) can also be modeled as

1 0 0O 0o 0O 0 0o 0 o T re » = 1 0 0O 0o 0O 0O 0o 0 o
Qe=10 10 0 0 0 0 0 0f |+ « =[]0 1 0 0 00 000
00100000 o} L * J L 61000 0 o o(C060
By knowing that since N = 2, A is the following form
100 0 0 0 O0OOO
A, =0 1. 0 0 0 0O 0 0 O (C.61)
001 00 O0O0O0O0

Consequentially, to maps from simple size of matrix to the compact one when the
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number of landmarks is N, @k ca n be calculated as follows
Qr = AL Qo As (C.62)

Up to this point, all the completeness for the prediction step for both the optimal and

robust filtering are satisfied.

Prerequisites before Performing the Correction Step in either Optimal and Robust
filtering

Either optimal and robust filtering utilizes the measurement model as
2k = [52] C.63
Knowing that the measurement model is going to give the range and bearing of laser

scanner from the robot frame relative to the landmark, hence the direct point-based

observation is recalled in this Chapter. It is modeled as

, 2 , 2
[52] \/<$§k - xls7k> + (yf,k - yls,k)
il = i (C.64)
ﬁk atan M _ Qr’k
T — Tisk
Where
s Ty k sin(0y. k)
= T+ dis ' C.65
[yls] [yr,k COS(@ﬂ,k)] ( )

The measurement model of landmark is assumed to be noisy therefor it is clear to

remodeled Equation (C.64) with an addition of random effect influencing both the range

Or. and bearing B k. Supposing that 7s and "8 are considered as the additive noise,

. . Zi s
respectively. The formulation of measurement “& is

o= [(Sk] + [T‘s] (C.66)
Br s

For i refer to the sequence detected landmark in the map. Now, it is clear since all the

variables used for calculating Equation (C.63) — Equation (C.66) is adopted from the
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robot pose TR = [z yr 0:]" and depend to the real landmark coordinate

vk = [rig vl from the fix map, then obviously the function relative to the
measurement is

2 = h(zp ) + 1y, (C.67)
Where Tr.k is the predicted state calculated in Equation (C.12) and " = [rs TB]T is
additive noise relative to the measurement as mentioned in Equation (C.66). Next,
similarly to the prediction step, the correction step for the optimal and robust also

requires to compute the Jacobian matrix H, in which the partial derivative of Zx with

. . _ T
respect to the corresponding state *R.k. Knowing that TR,k = [k Yrk Ork]” from

the prediction step, then it is obvious to have

S st st
8mr,‘k: 3%’,}@- aer,.k

o8, 08, opk (C.68)
8wr,k 8yr,k 867‘,’6

- oz} _
a”L'R’k7

Where correspondingly, all elements in Jacobian matrix H are presented as

(;ﬁik :8Z,k ' (\/(x;k B mls’k>2 + (yll’f B yls’k>2>

= 2 (21 —m5) (1) (C.69)
2 2
2\/($lv’< —215)" + Y1k — Yis)
%, 0 \/ . 2 i 5
8yr’k _ayr,k . ( (xl,k - xls,lc) + (yl,k — yls,k) )
(C.70)

2 (1 —yis) (—1)
2\/($l,k — 1'15)2 + (yl,k - yls)2

146



FIEREA AR S

s 0 - 2
Orr 00,1 (\/(xl»k —15)" + (Yrk — Yis) )

1
= X (2 (ml,k _-Tls) dlSSin<0’l"7k)_

2\/(37171@ —215)° = (yk — is)”

2 (Y1, — Yis) dlsCOS(Hr,k)> (C.71)
dis .
- 2l‘ - X ((mlk —x15) stn(0r 1) —
\/(mz,k —x15)" — (Yik — Yis)

(V1.6 — Yis) 608(9r,k))

where Equation (C.69) — Equation (C.71) represent the partial derivative of the range
with respect to the state. Next, the partial derivative of the bearing with respect to the

state can also be calculated as

oB; 9] Yk — Yis
= _ t e
Oxry  Oxpk (a a (l'l,k — s

_ 1 — Yk — Yis) (—1)
1+ (yz.k—yzs )2 (IBLk - 33[8)2 (C-72)
T,k —Lls
_ Y,k — Yis
(xl,k — 1’15)2 + (yl,k - yls)2
B! 0 —
: Pr _ . (atan (yl,k yzs> B 97’)
Yrk  OYrk Tk — Tis
_ 1 — (z10 — T15)
1+ Y,k —Yis 2 (xl.,k - l‘ls)2 (C73)
ml,kimls
_ — (z16 — 215)
() — 9015)2 + (yik — yls)2
85}; . 0 Yk — Yis
0.k 00,) atan <l"l,1c - ﬂizs> o
_ 1 —discos(0rk) (w1 — 215) = (=dis - (=sin(0r)) Wk — Yis)) ] (C.74)
- - ;
1+ <;{§t:glls> (yl,k - yls)

Now by supposing that Az =z, — 21 , Ay =yik — Uis , and
_ 2 2
q=(z1k — @15)” + (Y — Yis) , all the compact elements of H can be presented

with respect to Equation (C.69) — Equation (C.74).
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20 —Ax
7a$r,k = NG (C.75)
a6} —Ay
= — C.76
ayr,k \/(_] ( )
8(511f dls .
= A 0,1) — A 0,
i = e (Bwsin(f) — Agecos(d) )

By following the same way as finding the compact formulation of the partial derivative
of h(.) with respect to state relative to the range, for the bearing one can also be

presented as

0B, _ Ay
orrr 4 (C.78)
B —Ax
a = C.79
OYr.k q (€.79)
0Bi —djs ,
B = (Azcos(0, 1) + Aysin(0,)) — 1 (C.80)
aer,k q
Accordingly, the Jacobian matrix of measurement is
—Az =By dis (Agsin(f,.,) — Aycos(Orp,
H=1X5 N 0 ) Sacostn ) (C81)
== == (Amcos(Or) + Aysin(0,x,)) — 1

q q
Note that Equation (C.63) — Equation (C.81) are considered when the model of
measurement only consists the range 1 and bearing SL. Therefore, if the signature is
always included as the last element for each landmark measurement, it is clear to

reconstruct the model of measurement 2k as
5t +rd
2z = |Bp 1B (C.82)
5
k
For i represent the ¢-th landmark and "%i.s is the correspondence between the
expected measurement and the landmark on the map. Consequently, when the

dimension of z i is increased, the Jacobian matrix H is sufficiently increased as well.

The formulation of H can be calculated by taking the partial derivative of h(.) with

respect to the full state vector of T including the robot pose *R.k and landmark 7y,
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s} as}, as}, L 96, 05,

90 Oxrr  OYyrr 00,1k Oxi; Oyij;  Si,
H = 2°k _ | 9B 9By, 9By, 9By, B 9Bk (C.83)
8xk; 8(17,,~7k 8yrrk 89"'zk axlij 8ylgj 81,5 .
Osj, Osj, Osj, Osy, Osy, Osj,

Oxp . OYyrx 00,k  Omiy; Oy Sij
Once the model of Jacobian matrix is known as Equation (5.1.68), according to

Equation (C.69) — Equation (C.81) the following element are additionally calculated.

o5 O (ars — 1) + (s — m)?

Oy, Oy,

- 9 (ilfl,j — ) (C.84)
2\/(96z,j —215) — (g — us)’
%;_3¢@u7mw2*@mfw92
oy oy
’ C.85
_ 2(yi; — wis) (C.85)
2\/(%;‘ — 9615)2 — (5 — yls)2
06t
88—;2_ =0 (C.86)

Equation (C.84) — Equation (C.86) represent the rest element for the first row in H.

Similarly, the rest elements for the second row are calculated as

. Yi,5 —Yis
e _8 atan (7x§j—xis) -0,

8xl,j 833173-
_ 1 - (yl,j B yls)
- 2 - 2 (C.87)
1+ Yi,5 " Yis (l‘l,j — -Tls)
Xy, —Tls
— (Y1 — Y1s)

(z1,5 — xls)Q + (1,5 — yls)2

. Yi,5 —Yis
0B8i _6 atan (7x1,;—xzs> — 0,

Oy Oy,
_ 1 . Tij — Tis (C 88)
L () |
Ly, — Lis

(21,5 — xls)Q + (1,5 — yls)2

149



FIEREA AR S

9B;,

=0
B (C.89)

Finally, for the last row, which is the partial derivative of h(.) with respect to i , all

the elements are equal to zero except the last one which is 1. Therefore

aaai —0 (C.90)
aﬁfk —0 (C.91)
;;i —0 (C.92)
;jj —0 (C.93)
aa;fj ~0 (C.94)
gi ~1 (C.95)

By applying®7 = T1k = Tis, AY = Yuk — Yis and 7= (Ter — 71s)* + (Wer = v1s)”,

we have
00 _ Az C.96
ori; /g (€96)
o0 Ay
= — C.97
i V4 (€37
95!
T 0 (C.98)
B,  —Ay
— = — C.99
oz j q ( )
B —Azx
— = C.100
oy1j q ( )
o8 _
Dot 0 (C.101)

T
Then, the Jacobian matrix H for case when TL = (21 yij s13] is included in

measurement model becomes
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—A

|
>
8
>
<

i Tqy % (Azsin(0, ) — Aycos(6, 1)) % 7 0
H=| 24 =22 —d (Azcos(0,) + Aysin(0,) —1 =24 =22 0] (C.102)
0 0 0 0 0 1

As the last formulation, in order to maps the low-dimensional of A into a matrix with

dimension (3NN +3) x 3, the following matrix is defined and further involved.

1 00 0..0 000 0...017
010 0.0000 0..0
001 0.0 000 0..0
000 0.0 100 0..0
Bem =10 0 0 0...0 0 1 0 0...0 (C.103)
000 0.000T1 0..0
—~— —~—
L 25 —2 2N — 25

Note, that from Equation (C.83) — Equation (C.103), the construction of *L.j

IElJ
TLj = |Yj (C.104)

51,5
For J represents the landmark J on the map correspondences with Ck as the expected

measurement given the full state vector T«. For this reason, in order to initialize the
expected landmark based on the direct point-based observation into the map, the inverse
point-based observation is involved, which is

T Tyk [cos(0,.k + B
Trj = |Yj| = |Yrk | + 0k |sin(brk + B}) (C.105)
81, S} 0
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