
 
 

中图分类号：                                   单位代号：10280 

密      级：                                   学    号： 
        

      
博士学位论文 

SHANGHAI UNIVERSITY 
DOCTORAL DISSERTATION 

题 

目 

基于特征的自适应滤波

SLAM 算法设计及在轮式移

动机器人中的应用 

 

 

 

 

作    者  

学科专业    

导    师     

完成日期     

 

 



 
 

 
姓    名：                                                     学号： 

论文题目：  

 

上海大学 

 

本论文经答辩委员会全体委员审查,确

认符合上海大学博士学位论文质量要求。 

 

 

 

答辩委员会签名： 

主任： 

委员： 

 

 

 

导    师： 

答辩日期：  



上海大学博士学位论文 

iii 
 

姓    名：                                                学号： 

论文题目：  

原 创 性 声 明 

 

本人声明：所呈交的论文是本人在导师指导下进行的研究工作。

除了文中特别加以标注和致谢的地方外，论文中不包含其他人已发表

或撰写过的研究成果。参与同一工作的其他同志对本研究所做的任何

贡献均已在论文中作了明确的说明并表示了谢意。 

 

                        签  名：           日 期：           

 

 

本论文使用授权说明 

 

本人完全了解上海大学有关保留、使用学位论文的规定，即：学

校有权保留论文及送交论文复印件，允许论文被查阅和借阅；学校可

以公布论文的全部或部分内容。 

（保密的论文在解密后应遵守此规定） 

 

签 名：          导师签名：          日期：           

 

 



上海大学博士学位论文 

iv 
 

 
 

上海大学工学博士学位论文 
 

 

基于特征的自适应滤波 SLAM算法

设计及在轮式移动机器人中的应用 

 

 

 

 

 

 

姓    名：  

导    师：  

学科专业：  
 

 

上海大学机电工程与自动化学院 

2020 年 11 月 



上海大学博士学位论文 

v 
 

 

A Dissertation Submitted to Shanghai University for the  

Degree of Doctor in Engineering 
 
 
 
 
 

Designing Adaptive Filtering for 
Feature-Based SLAM Algorithm of 

Wheeled Mobile Robot 
 

 
 
 
 
 
 
 
 
 

MA  Candidate ：Heru Suwoyo 

Supervisor ：Yingzhong Tian 

Major ：Mechatronic Engineering  
 
 
 
 

School of Mechatronic Engineering and Automation, 

Shanghai University 

November, 2020 



上海大学博士学位论文 

vi 
 

摘  要 

移动机器人在未知环境下的同步定位和地图构建(Simultaneous Localization 

and Mapping, SLAM)同时包含定位和建立地图两个问题，被认为是机器人实现完

全自主运动的关键技术之一，对机器人的导航、控制、任务规划等领域有着重要

意义。用数学模型描述来描述 SLAM 问题，常用的模型分为基于滤波器与基于

优化问题两种模型。本文建立的 SLAM 模型是基于滤波器的 SLAM 系统，因此

SLAM 问题可以描述为：估计机器人与空间中路标位置的均值和协方差。 

由于传感器和惯性测量设备存在误差，得到的轨迹与地图通常和真实情况存

在着一定的误差，如何减少噪声带来的影响，建立准确、一致的地图，是 SLAM

研究者们关注的主要问题。 

传统的滤波器无法对系统过程中的噪声进行估计和处理，噪声误差会随着机

器人的运动不断累积，最终造成系统的失效。本文的主要工作在于使扩展卡尔曼

滤波(Extended Kalman Filter, EKF)和平滑变结构滤波(Smooth Variable Structure 

Filter, SVSF)能够估计系统过程和测量过程的随机噪声并统计及其相应的协方差。

本文的主要研究工作： 

(1) 在滤波器中加入自适应机制，即自适应滤波。自适应滤波器的主要设计目的

是考虑到滤波过程中的参数变化或噪声统计来调整滤波器增益。自适应滤波

器方法使得常规滤波器具有递归估计噪声统计量及其对应协方差的能力。采

用离线计算参数来调节自适应参数的批量参数估计自适应滤波方法，将提出

的方法称为自适应扩展卡尔曼滤波器(Adaptive Extended Kalman Filter, AEKF)

和自适应平滑变结构滤波器 (Adaptive Smooth Variable Structure Filter,  

ASVSF) 

(2) 分别参考最大后验指数和加权指数原理，推导了传统的 EKF 和 SVSF。由于

原始形式没有估计值，采用一步平滑法对 EKF 和 SVSF 进行了改进。使用平

滑参数对公式进行离线推导，然后计算出所有未知参数的次优值。但是，由

于存在多步平滑项，自适应过程需要简化，简化处理可能会导致系统过程和

测量协方差的非正定矩阵的不准确，因此还涉及到抑制发散的处理方法，使
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得自适应滤波器可以发散抑制。 

(3) EKF 和 SVSF 的采用相同的自适应策略更新协方差。由于 EKF 或 SVSF 的

原始公式中没有估计值，无法运用数学公式推导，因此为了弥补这个估计值

的误差，在一步平滑的基础上对 EKF 和 SVSF 进行了改进。为了防止协方差

的复杂度过高而引起发散，还引入了无偏估计和创新协方差估计。因此，改

进后的滤波器可以在时间积分下递归的更新噪声统计。 

(4) 将设计的 SLAM 算法应用于轮式机器人进行仿真实验。设计了基于速度的运

动模型和基于直接测量的测量模型，采用 Turtlebot2 机器人的真实参数进行

仿真实验。分别将传统的 EKF-SLAM, AEKF-SLAM, SVSF-SLAM, ASVSF-

SLAM 算法估计的轨迹和特征地图与参考轨迹和特征地图进行对比，本文提

出的方法在精度和全局一致性方面优于传统的算法。 

(5) 本文使用 The Victoria Park dataset 数据集进行实验验证，该数据集通常用于

验证基于二维在线特征的 SLAM 算法的鲁棒性和有效性。该数据集是澳大利

亚野战机器人中心在 2009 年使用 Nebot 机器人在维多利亚公园采集的，该

数据集运行时间为 26 分钟，路径长度达到了 4 公里，数据场景的区域面积

18321 平方米。所有实验都在搭载主频为 2.3GHz，Intel Core i5双核处理器，

内存频率为 2133MHz 的 8G内存的电脑进行测试。从均方根误差和归一化误

差平方两个方面分析比较了所有算法的精度和一致性。比较表明，本文提出

的 ASVSF-SLAM 算法优于传统算法。 

 

关键词：同时定位和地图构建(SLAM)，特征，激光雷达，极大似然估计(MLE)，

最大后验估计(MAP)，自适应卡尔曼滤波 SLAM 算法，自适应平滑可变结构滤波

SLAM 算法 
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ABSTRACT 

Simultaneous Localization and Mapping (SLAM) is a relatively widespread 

problem that needs to be solved to make a robot fully autonomous. Given the noisy 

measurement and process, the system architecture should find the accurate position of 

the robot and construct the map concurrently. Determining the inaccurate position of 

the robot can makes an improper construction of the map and vice versa. Linguistically, 

the main objective of addressing the SLAM problem lies in estimating the mean of the 

robot pose and feature-based map and their covariances. According to this brief 

description, it is not surprising that the use of the Extended Kalman Filter (EKF) and 

Smooth Variable Structure Filter (SVSF) have been significantly solving the problem 

of Simultaneous Localization and Mapping (SLAM).  

The implementation requires an accurate system model and known prior 

knowledge. However, the theoretical perspective illustrates no precise system model 

due to some considerations, such as avoidance of physic laws. Besides that, the prior 

knowledge of noise statistics is usually unknown or partially known in the real 

application. Therefore, by manually defining them as the conventional and common 

way, both the performance of the SVSF and EKF possess a high risk of degradation. 

The inaccuracy of the modeling system might enlarge the estimation error. The 

uncertainty caused by the unpredictable and random error might affect the characteristic 

statistical change, which undoubtedly leads to the filter divergence condition.  

Hence, the traditional form of both filtering strategies should be initially enhanced. 

The significant contribution of this research is to equip EKF and SVSF with an ability 

to estimate the noise statistic of the process and measurement and its corresponding 

covariances. This strategy is well-known as an adaptive filtering method based on a 

batch estimation of parameters. It is a popular method to tune the gain by offline-

calculating the unknown parameter. Henceforth, they are termed as Adaptive Extended 

Kalman Filter and Adaptive Smooth Variable Structure Filter (AEKF and ASVSF). As 
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an effort to accomplish these goals, in the first case, the conventional EKF and SVSF 

are respectively derived by referring to the principle of maximum a posterior and 

weighted exponent. Due to the absence of estimated values from the original form, the 

EKF and SVSF are modified based on the strategy of a one-step smoothing method. 

This process allows the system to have the smoothed parameter that can be utilized to 

proceed with the offline-derivation process. Afterward, the suboptimal values of all 

unknown parameters can be calculated. However, due to the presence of a multistep 

smoothing term, the adaptive process needs to be simplified. Therefore, the inaccuracy 

might occur because of a non-positive definite matrix to the covariances corresponding 

to either process or measurement. For this reason, the use of the divergence suppression 

method is also involved. Besides that, both the suboptimal estimate values are also 

estimated using the unbiased estimation method. In the second case, the conventional 

EKF and SVSF are assisted by a different approach to the previous one, named 

Maximum A Likelihood Estimator and Expectation-Maximization.  

In this design, the adaptive forms are generated by assuming that the updated 

covariance form of EKF and SVSF are the same. However, the mathematical derivation 

chokes temporarily due to the presence of estimated values which is unavailable from 

the original formulation of the EKF or SVSF. Therefore, aiming to cover this lack of 

estimate values, the EKF and SVSF are modified based on a one-step smoothing 

method. Furthermore, to prevent the divergence caused by covariances' complexity, the 

unbiased estimation and innovation covariance estimation is involved. Hence, the 

proposed methods can recursively update the noise statistic under time integration. All 

the adjusted parameters based on the previous calculation make the filtering learn and 

improve without changing their characteristics. Furthermore, the proposed methods are 

applied to solve the SLAM problem of a wheeled mobile robot. Henceforth, both are 

named as AEKF-SLAM and ASVSF-SLAM algorithm.  

The proposed method's verification and validation are conducted in two different 

cases, the synthetic-based simulation and real-experiment. The synthetic-based 
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simulation considers that the robot moves from the initial position to the goal position 

by executing wheel rotation ticks per second. The user gives these values, but they are 

assumed to be always followed by the small additive noise. Sequentially, it measures 

all distinguishable features by presenting the range and bearing values to the system. 

Similarly, the measurement values are considered to be noisy. Therefore, the synthetic-

based simulation assumes the reference path when the robot is moved using a motion 

model without any perturbation. The map is supposed to be known by placing some 

features around the robot path. The motion model and measurement model are designed 

by adopting the differential steering system and direct point-based observation, 

respectively. Meanwhile, the Victoria Park dataset recorded by Nebot, 2009, at the 

Australian Centre for Field Robotics is used for the real-experiment. This popular 

dataset is commonly used to verify the adaption or invention to a 2D online feature-

based SLAM algorithm. A path through an area of around 197m x 93m is described in 

this dataset. This sequence consists of 7247 frames, captured over a total period of 26 

minutes, along a 4 km trajectory. The data set includes steering and rear-axis wheel 

sensor readings (odometry) and laser range finder readings (one scan of 360 degrees 

per second) along with GPS data. A tree detector feature is given for the laser range data 

along with the dataset. Invariably, they have a wide distance to each other and can be 

isolated or classified with standard data association techniques. However, spurious data 

is found in some instances and must be deleted. All of the tests are conducted on a 2.3 

GHz Dual-Core Intel Core i5, 8 GB 2133 MHz LPDDR3. The purpose of this 

experiment is to evaluate our approach's consistency and to examine the computational 

complexity. According to these simulations, all algorithms' accuracy and consistency 

are analyzed/compared in terms of average RMSE and NEES under the Monte Carlo 

Simulation. The comparison shows that the proposed method, ASVSF-SLAM 

algorithm, is better than the conventional method. 

Keywords: Simultaneous Localization and Mapping, Feature, Laser Scanner, MLE, 

MAP, Adaptive EKF-SLAM, Adaptive SVSF-SLAM. 
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Chapter I Introduction 

This chapter consists of the background, problem statement, hypothesis, related 

works, contribution and novelty, scope and limitation of study, content, and 

organization of the dissertation. 

1.1 Background  

The mobile robot has been widely applied in many sectors[1]–[5]. Therefore, it is not 

surprising to hear that it has been attracting much attention from many researchers. In 

the case of autonomous applications, the mobile robot should be able to execute all the 

given tasks without any[6]–[11] human interference. In order to achieve this provision, the 

robot should be able to initially perform the fundamental task of robot navigation, which 

is localization[9], [10], [12], [12]–[17]. Localization is the problem of determining the pose of 

a robot relative to the given map of the environment and establishing the 

correspondence between the local robot and map system coordinate[18]. There exist 

many limitations affecting this task, such as the unstructured surface, avoidance of 

physic laws, sensor limitation, and other unpredictable factors causing the uncertainty[4], 

[19]–[23]. Consequently, the accuracy of navigation might be decreased. Thus, the robot 

should first improve the information related to its pose, which can be done by gathering 

all the vital information. It can be established by utilizing the exteroceptive sensor, such 

as a camera, laser scanner, and sonar[15], [24]. Continuously, all the perceived information 

about its surrounding are used for building the global environment map that can be 

further utilized for localizing itself in the environment[12], [18], [25]–[27]. In the localization, 

the robot usually utilizes the proprioceptive sensors such as wheel encoder, gyroscope-

based orientation sensor, and accelerometer[6], [28]–[31]. The precise and accuracy will be 

dependent on the location of the current robot. Now, these tasks sound complicated. 

The robot should collect the coordinate of all the features as well as knowing its pose[16], 
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[18], [32]–[34]. Nevertheless, it has been famously noticed as the popular problem of a 

mobile robot named as Simultaneous Localization and Mapping (SLAM) problem[1], [4], 

[35], [5], [8]–[10], [13], [14], [17], [19]. The SLAM framework based on the stochastic map 

approach was firstly introduced by Smith and Cheesman in 1986[7], [34], [36].  

 As an effort to acquire a reliable map, the robot should be having an accurate 

estimation of its state. Meanwhile, the accurate estimation state can only be satisfied 

when an accurate estimation map is available. Therefore, the perspective of 

probabilistic and calculus has been considered as a core of the estimation-based SLAM 

strategies[2], [37]–[45]. Among all the various approaches, Extended Kalman Filter (EKF) 

is the most popular and widely used[9], [22], [28], [32], [46]–[51]. There also existed many 

similar recursive filtering methods used for SLAM, that includes the relatively newest 

form of filtering, named as Smooth Variable Structure Filter (SVSF)[1], [4], [22], [39], [43], [44], 

[52]–[55]. As the highlight in SLAM for large-scale application, the computation 

complexity is the main issue. This complexity is remarkably growing up under the time 

integration while the new landmark is detected and added to the state vector[10], [12], [18], 

[32], [37]. Consequently, the number of both the state vector and their corresponding 

covariances will also be grown[4], [8]. Furthermore, to satisfy the effectiveness and 

accuracy, the mentioned estimators require the precise and accurate system model and 

known noise statistic[20], [29], [45], [48], [56]–[66]. However, there almost no exists an accurate 

model. It is due to the system’s uncertainty are characteristically unpredictable and 

unobservable. Additionally, the prior knowledge of noise statistics is only predictable 

and suffers from the accurateness. Because of these reasons, there have been existing 

some approaches. It adopts the principle of batch estimation, which equipping the 

traditional form with the time-varying noise statistic. Similarly, this research proposes 

the adaptive filtering used for the robust estimator, SVSF. It aims to replace the role of 

EKF for the SLAM algorithm. Unlike the tradition, the SVSF is completed with the 

recursive noise statistic of the process and measurement as well as their corresponding 

covariances. In which it gives a novelty and innovation among the existing adaptive 
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filter. As a way to present significant validation, it is also compared with an Adaptive 

EKF. Thus, adaptive EKF is also designed using the same strategy. It is noted that, this 

strategy aims to improve EKF and SVSF to precisely predict and update the state vector 

and its corresponding covariance. In this case, all the small additive noise will 

characteristically be recursive and responsive, referring to the current system.        

The process of reaching an adaptive filter from the traditional form required some 

approaches. Initially, both EKF and SVSF were modified by using the principle of one-

step smoothing point[22], [41], [46], [58], [61], [63], [67]–[69]. It aims to provide the multiple-step 

of estimate values, originally ungiven by the traditional forms, that might occur while 

the mathematical derivation is being stated. Consequentially, the involvement of 

different estimator such as maximum a posterior[4], [56]–[58], [65], [69], maximum likelihood 

estimation[8], [26], [59]–[61], [70], [71], expectation-maximization[8], [60], [64], [70]–[72], and 

weighted exponent[58], [69]. Besides that, the different methods were also attached to 

remove the possible effect that might be causing the divergence.  The first method is 

the divergence suppression method[4], [65], [73] used to reupdate the predicted covariance 

of the state vector. And the second one is the innovation covariance estimation[8], [20], [21], 

[56], [59], [73], [74] used to prevent the existence of non-positive definite matrices of the 

process and measurement covariance. As the predecessor of these additions, the 

unbiased estimation[8], [58], [75] was also completed to the estimation process. It aims to 

generate more robust estimate values of the process and measurement noises and their 

corresponding covariances. The process of achieving Adaptive EKF and SVSF is 

separately introduced. To validate the effectiveness, they are directly implemented to 

solve the online SLAM problem of a mobile robot. Henceforth, they are termed as 

AEKF-SLAM and ASVSF-SLAM algorithm[4], [8]. They are realistically simulated, 

referring to the feature-based mapping and landmark-based localization processes. As 

an effort to analyze their effects, both of them are compared to the conventional 

strategies in the form of Root Mean Square Error (RMSE)[1], [30], [44], [45], [76] of Estimated 

Path Coordinate (EPC) and Estimated Map Coordinate (EMC). According to these 
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comparative results, the presence of adaptive strategy has been significantly improving 

the traditional method of EKF and SVSF. 

1.2 Problem Statement and Hypothesis 

By solving Simultaneous Localization and Mapping, the robot might have the 

ability to fully and autonomously accomplish the navigation task without human 

interference. This process requires the robot to locate the current position and build the 

map based on all the acquired information of the sensor data in each iteration of 

movement. Besides performing two different tasks simultaneously, the difficulty of 

solving this problem lies in the existence of the unavoidable noise that always follows 

the measurement. Furthermore, the irregular surface where the robot is operated might 

also affect the system's stability. Thus, the filtering method is commonly used against 

these causes of uncertainty by conducting the estimation process. Using filtering for 

SLAM is intended to approximate the robot coordinate and acquire the coordinate of 

the features on the specific environment, given the control command and real 

measurement.  After that, these types of coordinates are then gathered as the 

representation of the robot trajectory and feature-based map in the global map 

representation. Shortly, the main tasks of solving SLAM problems can be divided into 

two parts: localization and Mapping, then combined with being operated at the same 

time. 

Localization 

The problem of self-locating the pose of the robot along its navigation. Commonly, 

in order to perform this task, the system learn the knowledge of the environment, the 

control command, the observation and command history, initial state, and the motion 

process at the environment. Mathematically it can be described by using the following 

probability distribution. 

 (1.1) 

where k is the time discrete index,  is the robot state vector,  is the 
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measurement data given by the exteroceptive sensor, laser scanner, and  is the 

control command sent to the robot and m represents the acquired information of all the 

tracked position.  

Mapping  

The mapping problem lies on the way to determine the information representing all 

the pose of the features spread on the environment. These tasks can be done by 

approximating all the coordinate of the features based on the previous robot position 

and the sensor reading, laser scanner. Analytically it can be represented by the following 

probability distribution. 

 (1.2) 

where  refers to the information of the position of the feature in the 

environment.  

Simultaneous Localization and Mapping  

The SLAM is the task of determining the consistent map of all the features 

available on the environment and simultaneously conducting the localization. It can be 

done by constructing the map and updating the robot's location to the global map 

representation based on the previous data of measurement and control command. The 

following probability distribution can represent this analogy. 

 (1.3) 

Simultaneous Localization and Mapping is challenging when the information of 

the previous robot position and the data of the measurement are noisy.  

Adaptive Filtering Problem  

Adaptive filtering is the main crucial problem that needs to be concerned before 

utilizing any conventional filtering method, such as the Extended Kalman Filter and 

Smooth Variable Structure Filter. The main objective of this problem is to determine 

how to obtain the noise statistic of the process and measurement recursively. Many 

researchers have stated that the optimality of any filtering method is significantly 

affected by the noise statistic. The mathematical derivation and estimation process are 
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required which aims to generate time-varying noise statistic and their corresponding 

covariances. There are some recommended approaches before using EKF or SVSF, 

such as Multiple Model Estimation and Gain-Tuning Adaptive Filter. The urgency of 

this problem is to optimize the ability of filtering method used for solving 2D feature-

based Simultaneous Localization and Mapping. 

1.3 Related Works  

As an effort to improve the filtering method, the batch estimation of parameter has 

been strongly recommended and traditionally conducted before applying the optimal 

filtering method. A. H. Mohamed and K. P. Schwarz Department introduced 

innovation-based adaptive Kalman Filter which is obtained by adopting the maximum 

a likelihood estimation to estimate the covariances corresponding to the process and 

measurement noise via the available information in the filter innovation sequence[59]. It 

is continuously improved with the presences of the fuzzy-innovation based adaptive 

filter, in which the measurement covariance matrix is regarded as adjustable parameter 

and can be tuned using fuzzy logic controller. This method is introduced by R Woo et. 

al [73]. Different from these methods, W Gao et. al. proposed the adaptive Kalman Filter 

by adopting the principle of Maximum A Posterior and smoothing it[69].  

Besides that, the batch estimation of parameter is also used for nonlinear version 

of Kalman Filter. Y Huang et. al. proposed the adaptive Extended Kalman Filter by 

estimating the noise covariance matrices based on online expectation-maximization 

approach[72]. Similarly, S Akhlaghi et. al. proposed adaptive extended Kalman Filter by 

adopting the residual and innovation-based strategies. It aims to estimate the absence 

of recursive covariance noise statistic of the process and measurement from the 

conventional EKF[20]. Additional to that, K H Kim et. al. also proposed an adaptive two-

stage extended Kalman filter by using the adaptive fading EKF. It is used to estimate 

the covariance matrices of the noise statistic of the process and measurement. As a note, 

that the fading EKF can be achieved by adopting the principle of innovation covariance 
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estimation[77]. Once, it has been considered as effective way to improve EKF, it is 

continuously used as the base. K A Myers et. al. introduced an adaptive Kalman Filter 

based on the state and observation noise samples generated in the Kalman filter 

algorithm to estimate the first- and second order moment of the noise processes[78]. 

However, the use of EKF is limited nowadays because of some factors. Therefore, 

the adaptation of EKF has been famously presented such as Cubature Kalman Filter 

and Unscented Kalman Filter. As the traditional method, they are not originally 

completed with an ability to update the noise statistic. For this reason, their adaptive 

formulations are introduced by J He et. al. and D Chen et. al. proposed the hybrid 

adaptive filter of Unscented Kalman Filter (UKF) by combining the Maximum A 

Posterior and Maximum Likelihood Creation to estimate the noise covariance for the 

state and measurement[65]. F Yu et. al. proposed the adaptive form of Cubature Kalman 

Filter to estimate the noise statistic and their corresponding covariance matrices by 

referring to Sage-Husa noise statistic estimator[13], [14], [50], [79]. Y Shi et. al. proposed an 

adaptive unscented Kalman Filter to recursively estimate the system process noise 

variance using the modified Sage-Husa noise statistic Estimator[80]. Z Gao et. al. 

proposed Adaptively Random Weighted Cubature Kalman Filter by involving the 

random weighting theory to estimate system noise statistics and predicted state and 

measurement together with their associated covariance[81]. J H Wang et. al. introduced 

an adaptive UKF used for estimating the noise statistic and their corresponding 

covariance by using the principle of  modified Sage-Husa noise statistic estimator[14]. 

B Gao et. al. School proposed an adaptive UKF for Nonlinear State Estimation via 

Maximum Likelihood Principle to estimate the covariance matrix of the process noise 

and measurement noise adaptively. The approach behind this achievement is estimating 

the noise statistic via the available new information in the filter innovation sequence[61]. 

The used method is the same method used by Mohamed[59].  

Furthermore, the application of filtering method is also implemented to solve the 

feature-based SLAM algorithm. It is intended and proposed to replace the role of 
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conventional algorithm, EKF-SLAM algorithm. P Yuzhen et. al. used the adaptive EKF 

based on modified Sage-Husa noise statistic estimator to resolve the problem of the 

error accumulation in the process of mobile robot localization[82]. Besides that, J H 

Wang et. al. implemented an adaptive UKF for solving SLAM problem of Unmanned 

Underwater Vehicle[14] and F Yu et. al. utilized the adaptive Cubature Kalman Filter for 

solving SLAM problem of mobile robot[13]. As the alternative of optimal filtering, the 

robust filtering, SVSF, has been also applied for this type of SLAM problem. D Fethi 

et. al. utilized the New Form of Smooth Variable Structure Filter completed by Time-

Varying Covariance Update and smoothing boundary layers for solving SLAM problem 

of Unmanned Vehicle[19]. D Fethi et. al. also utilized the Smooth Variable Structure 

Filter with a fixed smoothing boundary layer for solving SLAM problem of Unmanned 

Vehicle[2]. Y Liu et. al. used the Smooth Variable Structure Filter as the FastSLAM 

algorithm core used for Unmanned Air Vehicle[9]. Although, the SVSF has been 

significantly giving much improvement to the feature-based SLAM, its implementation 

does not concern to noise adaptation. For this reason, the adaptive filtering method is 

proposed to improve SVSF before utilizing it as the SLAM algorithm. In this 

dissertation, the batch estimation of the unknown parameter is applied based on MLE 

and MAP. However, there is a lack of estimate values that cannot be adopted from the 

original formulation of SVSF. Thus, as the innovation in this research, the SVSF is 

smoothed using a one-step smoothing point. Besides that, the estimation process is 

proceeded by involving the unbiased estimation to guarantee that the estimated noise 

statistics are unbiased from the actual estimate values. By using these strategies, the 

novelty of this research is emphasized. 

1.4 Research Contribution and Novelty 

The primary research lies in the filtering strategy area, indicated by the presence of 

SVSF development. Recently, SVSF has been considered as the robust filtering for state 

estimation since Gadsden introduced the complete form in 2011. Like the other 
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traditional estimator, it can estimate the posterior state and covariance regarding the 

corresponding gain. It is very robust and stable compare to the existed filtering method 

for modeling uncertainties and errors. Nevertheless, the usage of SVSF requires initial 

predefinition to the characteristic of the prior noise statistic interfering with the process 

and measurement system. The absence of a time-varying variable in the traditional 

SVSF might degrade the robustness and stability of SVSF in case of a real application 

or even realistically simulation. Therefore, the main contribution of this research is to 

introduce a new form called adaptive SVSF. It is done by firstly estimating the original 

formulation with some different methods and strategies. The following flowchart can 

illustrate the process of generating an adaptive filter for SVSF. 

Furthermore, all the concepts seen in Figure 1.1 were also adopted to achieve 

the adaptive form of traditional EKF. The main reason is to present a more comparative 

method to validate the robustness, stability, and accuracy of Adaptive SVSF. Since the 

product of this research can be broken down into the field of state and parameter 

estimation, so that, this methodology can be applied and implemented on the case of 

target tracking, simultaneous localization and mapping, fault detection and diagnosis 

problem. These contributions are significant to develop the existence of SVSF and EKF 

with all their capabilities. To summaries the methods above, the following statement is 

presented.  

 
Figure 1.1 Adaptive Concept 
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Primary Contribution and Innovation 

Instead of only using EKF and its adaptive formulation, this dissertation 

emphasizes the use of a robust filtering method that is adopted from the sliding mode 

concept, SVSF. According to the characteristic, the formulation of SVSF's gain and its 

updated covariance is different from EKF. Therefore, even involving the traditional 

method such as MLE or MAP, it still highlights the novelty in this dissertation. 

Concurrently, this dissertation presents an innovation that considers the complex 

formulation of covariance as the base for the whole estimation process.  

Besides that, the derivation process is conducted to find the covariance matrices of 

noise statistic and its mean formulation in which it is different from the usual approach. 

Furthermore, unlike the traditional, SVSF is smoothed to provide the lack of multiple-

step estimates values given by Maximum A Posterior or Maximum Likelihood 

Estimation derivation. Moreover, the unbiased estimation is also involved aiming to re-

check and re-ensure that the suboptimal solution has the zero-bias. In the end, to prevent 

the occurrence of divergence conditions that might be caused by nonpositive definite 

matrices, the use of innovation covariance estimation is involved. It is used to replace 

the covariance of innovation error. It aims to improve the optimality of the proposed 

method more.     

Secondary Contribution and Innovation 

The former method commonly used as 2D feature-based algorithm is EKF. 

Therefore, by replacing it with SVSF, it gives innovation and novelty alternatively. 

Additionally, the use of SVSF is also enhanced by applying the adaptive filtering 

method, named as a batch estimation of the parameter. Thus, it gives a significant 

contribution to the new formulation of SVSF. The presence of adaptive SVSF is used 

to solve the online SLAM problem of a mobile robot with the feature-based mapping 

and landmark-based localization.  
 
 
 



上海大学博士学位论文 

11 
 

Scope and Limitation 

The recursive estimation process for SVSF is conducted by assuming that there is 

no lack of prior measurement. The saturation function is on a steady-state condition 

when the estimated values are inside the boundary layer width. Furthermore, instead of 

using the simplified formulation of update covariance as introduced by Joseph, 

designing adaptive SVSF refers to the compound formulation. It aims to keep the 

accuracy of uncertainty about the state. The validation of the proposed method is taken 

by comparing it with the other filtering method to solve the feature-based SLAM 

problem. The simulation is conducted by initially assuming that this robot moves 

around the environment based on the control command sent by the user. When it moves, 

this robot acquires the position of all the features. This analogy is considered as a 

reference. Continuously, to provide a realistic simulation, the motion and measurement 

of the robot are perturbated with randomly generated small noise. Therefore, it is stated 

that the main role of the proposed method is to estimate the robot path and feature 

coordinate, simultaneously, given the inaccurate control command and noisy 

measurement. Accordingly, by knowing the truth and estimated values, the validation 

and comparison are conducted in terms of Root Mean Square Error.  

1.5 Organization of The Dissertation 

The rest part of this dissertation is organized as follows. Chapter II reviews the 

primary literature related to Gaussian State Estimation, including State Estimation for 

Solving the Stochastic Dynamic Problem, Kalman Filter, Extended Kalman Filter, 

Variable Structure Filter, and Its Extended Version, and Smooth Variable Structure Filter. 

This chapter also presents a Literature Review on Localization, Mapping, and 

Simultaneous Localization and Mapping Problem, including General Problem of 

Feature 2D SLAM, Motion Model, Measurement Model, Feature Extraction using 

Derivative of Recorded Scan, Landmark Measurement, Localization using EKF, 

Simultaneous Localization and Mapping using EKF. Chapter III presents the process of 
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designing adaptive EKF and adaptive SVSF. The mathematical derivation behind this 

process is also presented. Moreover, the Adaptive EKF and SVSF are separately 

validated by implementing them to solve the online SLAM problem. In which, the 

discussion is presented in Chapter IV. The experiment, result, and discussion will be 

presented in Chapter V. Chapter VI presents the conclusion. 
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Chapter II Literature Review on Gaussian State 

Estimation and Feature-Based SLAM 

The state estimation plays a significant role in solving the problem of Simultaneous 

Localization and Mapping. This chapter presents the popular filtering method for 

solving the SLAM-like dynamic system. It presents the Bayesian Framework, Kalman 

Filter, the most popular linearization-based filtering, the Extended Kalman Filter, and 

Smooth Variable Structure Filter basics. This chapter also presents the general 

definition of a feature-based 2D SLAM problem applied for a wheeled mobile robot. 

Some fundamental prerequisites commonly used to solve this problem are also 

presented sequentially. It includes the motion model, direct point-based observation, 

and inverse point-based observation.  

2.1 Introduction 

The primary role of estimation is to extract the actual state from the system's noisy 

measurement or observation and form a state estimate. This extracting aims to minimize 

the estimation error caused the uncertainty, which often interfered with the processing 

system and measurement. There almost no exact manner to against and remove this 

uncertainty except the probability-based approaches. Thus, the probability is considered 

the central core behind the estimation theory used for mathematically modeling the 

uncertainty[18].  

The enormous contribution of estimation theory is presenting how to obtain an 

accurate state from the noisy data. The development of estimation strategies has 

involved a large number of contributors from different fields listed as follows. Girolamo 

Cardan (1501 - 1576) was considered the first contributor who presents probability's 

systematic treatment[83]. Moreover, after some development, Jacob Bernoulli (1654-

1705) introduced the first rigorous proof of the Law of Large Numbers for repeated 
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independent trials, which is now popularly known as Bernoulli Trials. Thomas Bayes 

(1702-1761) derived the famous rule for the statistical inference that provides the 

Bayesian Estimation method[44]. Carl Friedrich Gauss (1777-1855) introduced the 

optimal estimate from the noisy data, named as a method of least squares, in 1795[84]. 

Continued, Andrei Markov ( 1856–1922) developed a theory of random process, which 

usually now termed as Markov process as well as Markov Chain[85]. Furthermore, 

Andrei N. Kolmogorov (1903-1987) reestablished the foundation of probability theory 

on measure theory, which became the basis for integration theory and the mathematical 

basis of probability and random process[83]. 

2.2 State Estimation for Solving Stochastic Dynamic System 

State Estimation is the task of extracting the state variables from the noisy 

measurement. The main objective of state estimation is to minimize the estimation error. 

The estimation error is the difference between the estimated values and the real values 

projected as the output on the particular space. The limitation of the measurement 

process and unpredictable noises cause the measurement to suffer from exactness. Thus, 

the framework needs to be stated to construct the state estimation of a stochastic 

dynamic system. And of the popular one might be adopted from the first-order Markov-

Process that can be expressed as follows 

 
(2.2.1) 

where k is discrete time index,  is the representation of the state vector and  

is measurement model. Meanwhile,  and  are the representation of small 

additive noises concerning the process and measurement, respectively. It is assumed 

that both additive noises are characteristically mutually independent and white. 

Moreover, the second assumption is both the transition model  and measurement 

model  are known as well as the control command  is given. The filtering 

problem is regarded to calculate the estimated values of the state vector recursively. 
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. Fundamentally, two common methods can be used to achieve this formulation: 

by either adopting the Bayesian Paradigm or the Gaussian distribution. 

2.2.1 State Estimation from the side of Bayesian Paradigms  

By using the Bayesian paradigm, allows us to calculate the conditional a posterior 

state of the probability function  of given the set of measurements . Analytically, 

it can be modeled as   where . Continuously, it is 

initially assumed that the conditional probability of its prior state  given the prior 

measurement  is denoted as , then the prediction and update step 

can be conducted. According to [44], the prediction step of Bayesian perception can be 

done by using the Chapman-Kolmogorov equation.  

 (2.2.1.1) 

where the state transition modeled  can be calculated by referring to 

Equation (2.2.1). Note that the initial state  is known as satisfying . 

Then by using the Bayesian Rule as the basis, the update step of this process can be 

analytically calculated as follows. 

 (2.2.1.2) 

where  is the normalizing constant which can be calculated as follows 

 (2.2.1.3) 

Once the likelihood function  is obtained by referring to the Equation (2.2.1), 

then Equation (2.2.1.3) can be calculated. As a note, that above calculation are modeled 

by referring to the following assumptions 

1. The state transition satisfies the first order Markov Process, i.e. 

 , where   

2. The measurement is conditionally independent given the state, 
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 The main purpose of the filtering is to construct the posterior Probability 

Density Function (PDF) accurately based on all the available information. Equation 

(2.2.1.1) – (2.2.1.3) present the base scheme of recursive state estimation. However, it 

cannot cover some scenarios because it only contains the conceptional solution. For this 

reason, the role of Gaussian PDF might be used. 

2.2.2 State Estimation from the side of Gaussian Distribution of The State  

The recursive equation of the estimated posterior stated can be analytically solved 

by taking consideration that the linear state transition and measurement model are 

subjected to addictive noises with Gaussian PDF[43], [44]. It is commonly used to simplify 

the complexity of the calculation of the Bayesian Paradigm. The assumption provides 

the normal distribution to both the prior state  and the likelihood 

, in which it will return Gaussian distribution for the posterior PDF 

. Under this assumption, the Bayesian filter is reformulated to as Gaussian 

Filter by converting the recursive computation of the former Bayesian filter to algebraic 

computations of the first moment (mean) and the second moment (covariance) of the 

existing conditional, which both are followed by the time and measurement update as 

can be presented as follows 

Time Update 

This step generates the prior state estimate  and the prior error state covariance 

 by applying the expectation operator. This step can be analytically formulated 

as follows 

 

(2.2.2.1) 

where  represents the Gaussian PDF. 

Measurement Update  

This step produces a posteriori state estimate and its updated covariances by 
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assuming that the error can be approximated as Gaussian since the error in the prior 

measurement is a zero-mean white stochastic process[43], [44], [52], [85]. By this assumption, 

the likelihood density can be restated as the initial process of measurement update as 

shown below. 

 (2.2.2.2) 

where the prior measurement is stated as follows 

  
(2.2.2.3) 

Meanwhile, its covariance and cross-covariances are respectively described by the 

following equations. 

 

(2.2.2.4) 

 
(2.2.2.5) 

Then by using the new measurement , the concept of the Gaussian filter leads 

the initial calculation of the posterior state and its covariances 

 (2.2.2.6) 

and by respectively calculating the gain and error representation as shown below 

 (2.2.2.7) 

 (2.2.2.8) 

Hence, both the posteriori updated state and its updated covariance can be 

respectively formulated as follows. 

 (2.2.2.9) 

 (2.2.2.10) 

Up to this point, it can be simply declared that the formulation Gaussian Filter 

above can reduce the complexity of Kalman Filter in the case of both the linear state 
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and measurement, which are subjected to an additive zero-mean white Gaussian noise. 

However, the main basis of the Gaussian filter is concentrated on how to calculate the 

Gaussian weighted integrals that are all formulated as nonlinear functions with 

Gaussian densities[30], [42]–[44], [46], [85]–[87]. Therefore, in some cases of a nonlinear system 

with non-Gaussian noise, a particular technique is required to solve the estimation 

problem. This technique leads to such linearization or approximation of probability 

density function, which is initially regarded to obtain the exact analytical solution due 

to this limitation. The most common Gaussian method for solving recursive nonlinear 

estimation problems through linearization is Extended Kalman Filter[35], [41], [46], [86], [88]–

[90] 

2.3 Kalman Filter  

Kalman Filter (KF) was invented by Rudolph Emil Kalman in the 1950s[83], [91].  

The significance of KF has been statistically proven to give the optimal solution to the 

linear system model, under the assumption of the noise is modeled as Gaussian.  

Generally, there are two versions of KF, which are continuous-time version and 

discrete-time domain. The continuous-time version was developed by Kalman and 

Bucy, known as Kalman-Bucy filter[44], [85]. However, the discrete-time estimation 

problems are the only ones concerned in this dissertation. 

The KF requires the dynamic system model, known control input, and 

measurement followed by the noise. Based on these requirements, the KF can provide 

the optimal state estimates: by predicting the state referring to the initial state, 

calculating the covariance of the predicted state, obtaining the weighted average of the 

predicted variable and measured values, and presenting new state as well as its 

corresponding covariance for next iteration.   

All these processes can be classified into two stages, which are termed as prediction 

and update. In the prediction step, the KF utilizes the previous state vector, control input, 

small additive noise assumed to interfere with the process, and their corresponding 
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predetermined matrices. Meanwhile, in the update step, the KF utilizes and combines 

the predicted state or termed the prior state estimate and the current measurement to 

obtain the new estimate state commonly named as posterior state estimate [92]. 

Initially, to formulate KF, the form represented by Equation (2.1) should be 

linearized. It is assumed that the linearized models are respectively given as follows 

 
(2.3.1) 

Then by referring to [83] the formulation of the recursive KF can be summarized. 

First, the prediction stage of KF can be summarized as follows 

 (2.3.2) 

 (2.3.3) 

where the  represents the state vector,  and  are known matrices 

corresponding to the state and control command, respectively. Meanwhile,  refers 

to the error covariance of the small additive noise of the process. Since, both the 

predicted state and measurement are computed, then the update stage of KF can be done 

as follows 

Firstly, the innovation (error measurement) and its covariances are respectively 

calculated as follows 

 (2.3.4) 

 (2.3.5) 

where  and  represents the error covariance 

corresponding to the small additive noise of the measurement. Once, Equation (2.3.4) 

and Equation (2.3.5) are calculated, the corresponding gain of KF can be computed as 

follows 

 (2.3.6) 

Finally, the updated state and its error covariance are determined by referring to 

the following equations, respectively. 
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 (2.3.7) 

 (2.3.8) 

Kalman Filter is known well as one of the optimal state estimation methods. It is 

also regarded as the popular Gaussian filtering used for solving the linear system, which 

is the successor of the Wiener-Kolmogorov filter (WF)[44], [85]. The main key of the 

optimal filtering method is minimizing the estimation error instead of designing the 

fixed filtering to generate the acceptable performance for a wide range of modeled 

uncertainties caused by the large dynamic. There have been existed many documented 

KF references with detail derivation[38], [85], [91], [93], [94]. The optimality of KF is strongly 

dependent on stability and robustness[85]. The KF assumes that the system model is 

known and linear, the system and measurement noises are white, and the states have 

initial conditions with known means and variances[10], [38], [44], [93].  However, these 

assumptions are always rare in the real application, resulting in suboptimal state 

estimates or even being unstable[95]. Besides that, the convergence condition is strongly 

dependent on the precise of computer and the complexity of matrix inversion[83]. 

2.4 Extended Kalman Filter 

According to the description above, it is impossible to construct and obtain the 

analytical solution to such nonlinear state transition and non-Gaussian noise. It leads to 

the condition that the predicted distribution  will not be computed 

precisely. Accordingly, a particular approach is required to be involved in solving this 

kind of estimation problem. There are two popular approaches, namely, the 

approximation of PDF and linearization. By linearizing the nonlinear system, the 

similar stages existed on Kalman Filter can be alternatively used. The most popular 

linearization-based filtering method is the Extended Kalman Filter, which is the 

extension of the Kalman Filter.  

The EKF approximates the nonlinear filtering problem by assuming that the 

distribution is Gaussian, and the direct numerical approximation in a descriptive sense 
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is used to calculate a posteriori distribution. Thus, EKF is classified into the local 

approach-based nonlinear filtering instead of the global approach one.  Unlike, KF the 

use of EKF is initially started by approximating the nonlinearity of the state or 

measurement model at the operating point[43], [44], [86], [96]. It is proceeded to updating 

both the state and its corresponding covariance by first calculating corrective gain 

respect the diversity between the actual measurement and predicted measurement. 

According to[2], [8], [44], [46], [47], [53], [72], [85], [89], [97], the process of EKF for both the 

prediction and correction stage are summarized as follows. 

Prediction Stage  

Like KF, the prediction stage of EKF assumes that the initial state value and the 

control command are available. The mean and covariance noise of the process and 

measurement are also predetermined. Then, the prediction stage of EKF starts by 

calculating the prior state vector by the following equation. 

 (2.4.1) 

Once, the predicted state estimate is computed, then its corresponding covariance 

can be sequentially calculated as follows 

 (2.4.2) 

where  is the Jacobian matrix of the state transition function . It is 

calculated by taking partial derivative of function  with respect to the state at time 

. Meanwhile,  refers to the error covariance matrix of the small additive 

noise following the process. All variables found in this stage are used to conduct the 

second stage of EKF, which is the update stage. 

Update Stage  

The update stage is intended to produce the updated estimate values of the state 

vector and its corresponding covariance. It is done by concerning the corrective gain. 

In which, the innovation (error measurement) is firstly calculated before determining 

this gain value. 

 (2.4.3) 
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where the predicted measurement is calculated by utilizing the predicted state estimated 

 as follows 

 (2.4.4) 

where  refers to the model of measurement function and  is the small additive 

noise of the measurement. Once, the innovation is calculated, then its covariance can 

also be computed. Mathematically it can be calculated as follows 

 (2.4.5) 

where  is the representation of the error covariance relative to the measurement 

noise. The calculation of obtaining the covariance of the innovation error utilize the 

predicted covariance of the state estimate. Hence, it can be declared that there is a 

connection between the prediction and update stage of EKF. Up to this point, the 

corrective gain of EKF can be calculated, which characteristically corrects the estimated 

value to minimize the innovation error computed above. Mathematically, it can be 

expressed as follows.  

 (2.4.6) 

Then, respectively the updated state estimate and its corresponding covariance can 

be computed below. 

 (2.4.7) 

 (2.4.8) 

Note that the Jacobian matrices of the state transition and measurement function 

are described 

 
(2.4.9) 

 
(2.4.10) 

2.5 Variable Structure Filter  

 As discussed earlier that Kalman filtering-type methods critically requires both the 
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accurate system model and white modeled noise. Unfortunately, they are rarely found 

in the real application due to some effects, such as the model structure, level and noise 

distribution, the availability of the initial condition, and the avoidance and reduction of 

the physical parameters. Therefore, to cover these limitations, the existence of a robust 

filtering method is introduced. Some methods can be classified into these types, such 

as robust Kalman, H-infinity, and Variable Structure Filtering-types[44], [45], [85], [86], [89]. 

And one of them is presented and discussed in this thesis, namely Smooth Variable 

Structure Filter, which is one of the successor filtering methods of VSF. The presence 

of SVSF was intended as an effort to improve the stability and robustness of KF. It was 

introduced by using the close principle of Variable Structure Filter.  

 As a leading introduction to SVSF, a brief discussion of the Variable Structure 

Filter is presented. VSF strongly refers to Variable Structure Control theory, which 

guarantees the stability given some bounded parametric uncertainty. And the Sliding 

Mode Control is the most popular form derived from the main principle of VSC. It can 

solve the estimation problem by utilizing a discontinuous switching plane along some 

desired trajectory. This plane is referred to as a sliding surface used to minimize the 

estimation error by keeping the state values along this surface. Although the VSF uses 

the discontinuous component for correcting the estimate as same as SMC, it has a 

different formulation. It similarly uses the principle of prediction and correction stage 

to KF. To perform the VSF, the VSF requires the known knowledge at the time k-1 and 

calculates the predicted state (prior state estimate) . Like Kalman Filtering-type, 

it obtains the updated state  by firstly utilizing the presence of system 

measurement. Similarly, to KF, using the linearized form of Equation (2.2.1), which is 

also expressed by Equation (2.3.1), the summary of the VSF form is presented as 

follows[30], [43], [44], [53], [85], [89], [90]. 

 

Prediction Stage  

This stage is used to determine the prior state estimate by using all the available 
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information including the transition matrix A, corresponding control matrix B, the 

initial state estimate , and the control command  

 (2.5.1) 

Since the predicted estimate is obtained, then the innovation (error measurement) can 

also be calculated as shown below. 

 (2.5.2) 

where the priori measurement  is computed using the following equation. 

 (2.5.3) 

Up to this point, there is no difference between the prediction stage of VSF and KF. 

 

Update Stage  

This stage is used to determine the updated state estimate by calculating the gain 

of VSF from all the obtained variables in the prediction stage and the following 

variables.  

 

 
(2.5.4) 

where  and . Meanwhile,  and . Then, 

the gain of VSF can be calculated follows 

 

(2.5.5) 

where  represents the Schur product,  is representing the error, max refers to 

the upper bound,  is the identity matrix, and , , and  represent the upper bound 

on modeling uncertainties of , , and , respectively[42], [43], [46], [85], [86]. Meanwhile, 

sign  is described as follows 
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(2.5.6) 

Generally, Equation (2.5.6) satisfies the following function. 

 
(2.5.7) 

Due to the complexity of gain calculation resulting in high-frequency switching, the 

performance of VSF is limited with the existence of chattering to the estimation states. 

As an effort to reduce the effect of this chattering, the presence of smoothing boundary 

layer  was introduced. It is intended to obtain the smooth function and ensure the 

robustness by maintaining the sign function when it is outside of this boundary. 

Analytically, the saturation function  replacing the sign function can be 

expressed as follows 

 
(2.5.8) 

in which the saturation function is defined as 

 

(2.5.9) 

large enough size to overcome the behavior of dynamic change. Thus, it leads to the 

existence of a relationship between the magnitude of VSF gain and the handling 

uncertainty level. Additionally, the smoothing boundary layer width should also be 

sufficiently large, so it can embrace the maximum reached values of the gain of VSF 

when conducting the estimation process. The smaller boundary layer width represents 

accuracy to the estimate with fewer uncertainties available. This analogy leads to the 

following function. 
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(2.5.10) 

According to Equation (2.5.10), it can be declared that the boundary layer width is 

a representative function associated with the presence of uncertainties in the estimation 

process. It is also apparent to say that the corrective gain of VSF can be calculated since 

both the upper bound and the level of noise are well-defined. And although the gain 

provides robustness and stability to the estimation strategy, VSF yields a non-optimal 

estimation result[30], [44], [76], [85], [87]. It also cannot be applied for such a nonlinear system. 

For this reason, the nonlinear form of VSF is required. 

 

2.6 Extended Variable Structure Filter 

As an effort to improve the capability of VSF for such a nonlinear system, an 

Extended Variable Structure Filter was introduced. Like KF and EKF, the estimation 

process of EVSF assumes that the nonlinear system and its measurements are 

respectively defined as follows 

 
(2.6.1) 

Conceptually, there is no much difference to VSF that the form of EVSF is referred 

to as the predictor-corrector principle. Therefore, there are also different stages, the 

prediction and update stage.  

Prediction Stage  

The predicted state estimate  can be obtained by utilizing the previous 

knowledge of the initial state  and control command . Furthermore, the 

small additive noise to the process  and measurement  and their corresponding 

covariances should predetermined. Analytically, the prediction stage of EVSF can be 

expressed as follows 
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 (2.6.2) 

where  refers to the state transition function. Similar to EKF form, once the 

predicted state  is obtained, the error measurement can also be computed. 

Mathematically, it can be expressed as follows 

 (2.6.3) 

where the prior measurement is calculated using the following equation. 

 (2.6.4) 

Update Stage  

Similar to the VSF, the core of update process lies on the corrective gain. It is 

calculated as follows  

 
(2.6.5) 

where  and  are the Jacobian Matrices as the representative linearized form of the 

process and measurement. They are respectively calculated as follows 

 
(2.6.6) 

 
(2.6.7) 

Then by utilizing the corrective gain, Equation (2.6.5), the updated state of EVSF 

can be computed below. 

 (2.6.8) 

Although, conceptually, the gain of EVSF is similar to the gain of VSF. They also 

have the same disadvantages and advantages. The only thing that makes them different 

is that due to linearization, the EVSF can be applied for a nonlinear system. However, 
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it is frequently conducted when calculating the correcting gain, in which the 

linearization sufficiently increases the numerical result.  

2.7 Smooth Variable Structure Filter 

A similar limitation exists on EKF can also be met on EVSF. Accordingly, the 

revised form was introduced in 2011 to improve their performance, namely Smooth 

Variable Structure Filter[85]. It is a relatively new predictor-corrector estimator that can 

be applied for both linear and nonlinear systems. The SVSF is formulated based on the 

Sliding Mode Concept[1], [22], [39], [45], [53], [55], which utilizes the switching gain to 

converge the estimates to within a boundary of the actual state values. 

 
Figure 2.1 Smooth Variable Structure Filtering Concept 

Assuming that the nonlinear system is modelled as follows 

 
(2.7.1) 

According to [85], the SVSF can be summarized as follows.  

Prediction Stage  

This stage determines the prior state estimate given the state vector's initial 

information, the control command, and all the relevant variables representing the noise 
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statistic and their covariances. The first step of this process can be seen as follows 

 (2.7.2) 

where  represents the state transition function. Once, the predicted state value 

 is calculated, the corresponding measurement can be obtained as follows 

 (2.7.3) 

Then, by calculating the difference between the actual/real measurement  and the 

predicted measurement , the innovation error  is calculated as 

 (2.7.4) 

Update Stage  

This process utilizes the corrective gain  for calculating the updated or 

posteriori state estimate . The gain calculation is expressed as follows 

 
(2.7.5) 

where  and  represents the Schur product of matrix multiplication and pseudo 

inverse of matrix, respectively. Meanwhile,  refers to the smoothing boundary layer 

width and  refers to the memory or convergence rate satisfying . 

According to Equation (2.7.5), the initial error measurement  is required. 

Therefore, the posterior error measurement should be defined when the noise statistic 

and their corresponding covariance, the boundary layer width, and convergence rate are 

predetermined. This scenario leads to the process of SVSF requires to present the 

posterior error measurement for the next step of estimation. It can be concerned once 

the updated state estimate is obtained, where the posteriori state estimate is calculated 

by using the corrective gain as 

 (2.7.6) 

The corresponding measurement of the update state  is firstly calculated as 

 (2.7.7) 

then the posteriori error measurement is computed as follows 
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 (2.7.8) 

Up to this point, the process of SVSF can be iteratively repeated. The stability and 

convergence of the existence subspace of SVSF can be evaluated by 

 (2.7.9) 

where  represents the absolute values of the error measurement which can also 

be calculated as  

 

The revised SVSF  

The SVSF is a relatively new estimator. And all the previously discussed process 

is the first form SVSF, which is not completed with any ability to update the state 

vector's covariance recursively. Accordingly, Gadsden introduced the use of covariance 

to tune corrective gain in the presence of uncertainties. Besides that, the presence of 

time-varying boundary layer width was also introduced. These additions also give a 

correction to the corresponding gain . Referring to[43], [44], [53], once the 

predicted state estimate  is obtained, the prediction stage of SVSF is added with 

its corresponding covariance as  

 (2.7.10) 

where it can be calculated using the initially predefined covariance . It is not 

that this initial covariance represents the uncertainty about the initial state . 

Meanwhile,  refers to the covariance of additive noise to the process and F refers 

to the Jacobian matrix of state transition function , which is calculated as follows 

 
(2.7.11) 

by utilizing the predicted covariance  in Equation (2.7.10), the calculation of 

the covariance of innovation error can be conducted as follows 

 (2.7.12) 

where  refers to the covariance matrix relative to small additive noise of the 

measurement. Meanwhile,  is the Jacobian matrix of measurement function 
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calculated as follows 

 
(2.7.13) 

The covariance of error measurement  is then used to calculated the time-varying 

boundary layer width . This process is analytically expressed by the equation below 

 
(2.7.14) 

This boundary layer width is also used to design a saturation function, which is 

expressed as follows 

 

(2.7.15) 

Meanwhile, A is defined as the function expressed below.  

 (2.7.16) 

It is note that,  refers to the convergence rate. Then the revised gain of SVSF can be 

calculated as follows 

 
(2.7.17) 

By using new gain, the updated state estimate is calculated using Equation (2.7.6). 

Accordingly, the update covariance of this state can be also calculated as 

 (2.7.18) 

Where   indicate the diagonal term of matrix. 

2.8 The Feature-Based SLAM  

Simultaneous Localization and Mapping is a relatively new problem of the mobile 

robot [2], [10], [26], [37]. It allows mobile robots to autonomously navigate in an 

environment without prior knowledge of the map without access to independent 
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position information. As the name, the objective of the SLAM problem is to localize all 

the tracked pose of the robot and simultaneously to construct the map based on the 

observation through the exteroceptive sensor, such as laser scanner[15]. Although the 3D 

type of laser scanner is available nowadays, the 2D one is commonly used to solve the 

feature-based SLAM problem. By knowing the pose of the robot and landmarks, a 

mobile robot could quickly and safely navigate to reach the goal position from a specific 

position. It is also the reason that SLAM is considered as the essential concerning 

problem before performing the path planning or path tracking. It is due to the easiness 

of making a proper decision after solving it. However, once the SLAM requires the 

approach to know where the robot is and address how the environment looks, the 

problem becomes chicken-like. The robot requires an accurate map of its environment 

when it localizes the position. In order to determine the precise map, a mobile robot 

needs to know the location in the environment.  

By this analogy, observation becomes a crucial part that needs to be carefully 

considered. As the common device interfered with some factors, such as dependence 

on the power supply, tolerance of the accuracy, and outer interference, thus the 

observation is followed by noise. The real-world sensor gives noisy values that make 

the measurement of either the robot pose and the environment subject to uncertainty 

and bias. Therefore, as the initial way to solve the SLAM problem, it is often 

characterized and modeled as the Gaussian distribution, which allows the user to jointly 

parameterize both the robot pose and environment using the multivariate-type of the 

Gaussian distributions. Accordingly, the main problem of SLAM problem can be solved 

by adopting the probabilistic manner to estimate the mean and covariance, which are 

mean as the expectation of both parameters and covariance represents the uncertainty 

due to the unpredictable and random noise following the system and measurement. 

2.8.1 Motion Model 

As mentioned above, the main objective of solving the SLAM problem lies in the 



上海大学博士学位论文 

33 
 

estimation process against the uncertainty caused by the noisy measurement and system. 

Therefore, it is not surprising that the role of filtering strategy is often involved. Before 

implementing the SLAM-based filtering strategy, the essential consideration of the 

motion model is firstly concerned[4], [8]. It is approached to apply the state transition 

process relative to the presence of the control command. The model comprises the 

probability of feature state with uncertainty caused by the random noise following the 

input and the situation relative to the environment where the robot is operated. A motion 

model is an approach used to know the pose of the robot given the previous pose and 

the velocity command. Behind the motion model's probabilistic configuration, the 

kinematic configuration is commonly concerned as an easy way to model the mobile 

robot. Kinematic[31] is a strategy to observe the robot motion by taking off some 

consideration, such as the mass, force, and interference that might affect the robot. It is 

only assumed that there is no much factor of the cause of motion.  However, to 

realistically used the kinematic for motion model, some elements lie on the move and 

turn the action of the robot are considered. It aims to satisfy the possible situation when 

the odometer gives noisy information. Mathematically, it can be expressed by the 

conditional probability . Where  represents the discrete time 

index. Note that instead of represents the x-coordinate pose of the robot, the  refers 

to the state of the robot consisting both the spatial pose  and heading . 

2.8.2  Measurement Model, Feature Extraction and Data Association 

Besides of motion model, the second crucial part need to be involved before 

working SLAM-based filter is a measurement model[4], [5], [8]. Measurement is the 

observation process by utilizing the data generated using the sensor device relative to 

the physical frame. There are many types of sensors that can be used to collect data 

around the environment where the robot is operated, such as ranges sensor or camera 

as the visual. Like on the part of the motion model, there exist unavoidable and 

unpredictable noise cause the presence of uncertainty. Therefore, instead of using the 
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deterministic model , the measurement is also represented by the 

conditional probability density function . In this dissertation, the type of 

sensor used as the primary measurement device is a laser scanner. It can be involved to 

sense the environment from the robot frame. There are two common noises classified 

to follow the range and bearing data. As the commonly generated input, the laser 

scanner gives some measurements depending on the ranges of each angle of 

measurement. Accordingly, it can be mathematically represented by the following 

expression  

 (2.8.2.1) 

Where N refers to the numbers of entire per measuring data using a laser scanner 

and  refers to a single value of ranges on once measurement. Therefore, it can be 

known that if the laser scanner has capability to sense 180 ranges and the angle 

increment of the index to index, the maximum number of measurements is 180. Further, 

in order to approximate the single measurement of laser scanner, the conditional 

probability of  can be concerned as the product of individual measurement 

likelihoods. Mathematically it can be expressed as follows 

 
(2.8.2.2) 

It is noted that, to approximate the single measurement, the state is firstly known. 

Meanwhile, m represents the map of the environment. It tells that the map of the 

environment should be specified before conducting the measurement. By definition, the 

map stores the information relative to the series of the sensed object of the environment. 

Accordingly, the mathematical representation of the object list of measurement can be 

expressed as follows 

 (2.8.2.3) 

Where M refers to the number of objects available on the environment. There are some 

ways to index the map, such as feature-based and location-based. Although they are 
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essentially the same, feature-based is the most frequently used to represent the single 

object available on the environment. Instead of indexing with a specific location, the 

feature-based uses the value of  contains in Cartesian location. Although, the 

specific location is most frequently used in 2D SLAM algorithm perspective. Therefore, 

it is suppressing that many researchers prefer to represent  instead of using . 

It aims to firmly show that all the objects are located on world coordinate . In this 

dissertation, the usage of sensor model is concerned as the feature-based, which 

involves the specific approach to extract the feature from single raw measurement. 

Referring to[18] and since the function of feature extractor is denoted by , then the 

information of the features that is generated from the range measurement can be 

expressed as . The main challenges of extracting feature using this approach is to 

recognize the feature from large data of range measurement resulting only small number 

of features on environment. 

The second fundamental component of feature-based mapping and SLAM systems is 

feature extraction. It seeks to leverage the characteristic of different object in the 

environment according the raw-sensed data. The low-level of feature extraction 

algorithm return the classification of the feature such as points, edges, center of curve 

segments and virtual corners.  

Naturally, it can be achieved by using a geometrical feature identification approach. 

This method involves a local curvature scale. Due to the needless of the constructed 

scale space of map, this approach has been considered having an effectiveness and low-

cost computation. The important of using feature extraction is to predict the 

measurement according the sensing data. Based on this observation, the extracted 

features are then proceeded into the step of data association in the SLAM systems. The 

key of data association is to manage the detected landmark in this observation. It is 

processed and should be matched with the landmark produced by prior observation. All 

the detected landmarks are then used as the part on the update process. The newly 

detected landmark is added into the state vector as the observed landmark. This process 
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is a predecessor step used to find the correspondence to the existing landmark. In which 

it is an importation part before calculating the innovation error of measurement. 

Commonly, the data association that is conducted based on the diversity between the 

newly and observed landmark is Nearest-Neighbor approach.  

2.8.3  Localization 

Localization is the process to determine the robot position  relative to the world 

environment[16], [18]. It has been regarded as one of the crucial parts to make the robot 

autonomously navigate itself[27], [87], [98]–[100]. There are commonly two general types of 

localization, namely relative localization and absolute localization. These models are 

classified based on determining the position of the robot in the environment, whether 

by utilizing the exteroceptive sensor or not. Since the localization does not use any 

measurement data from external sensors, it can be classified as the relative localization. 

Contrary, since the system utilizes the information acquired by the external sensor about 

the environment, it is well-known as absolute localization. Since the localization 

process's objective is to estimate the position of the robot given the information of the 

previous position information, mathematically it can be expressed as follows 

 (2.8.3.1) 

It is clear to declare that since the previous state of the robot is determined from an 

external sensor, the robot pose in the environment can also be discovered. The most 

popular techniques used for this type of localization is a dead-reckoning. Recursively, 

the previous robot pose is used as a base in the next step. It is used to determine the new 

pose of the robot in the environment. Therefore, since the determination of the next 

location can be predicted using the control command and the information of the base 

data, the motion model algorithm mentioned above can be directly implemented.   

2.8.4 Simultaneous Localization and Mapping 

 This section presents the big problem concerned as the manner to make the 
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mobile robot to be truly autonomous. It is a termed problem that arises when there is 

no map given to the robot, and the robot's location relative to the environment is 

unknown, instead of the set of measurement  and control command . It is 

called Simultaneous Localization and Mapping (SLAM) or termed as Concurrent 

Mapping and Localization (CML). In SLAM, a mobile robot acquires the map of the 

environment and simultaneously localize its position relative to the global coordinate 

system. Solving the SLAM problem has been considered to have a more challenging 

task than only solving the localization problem. Since generating a map of the 

environment requires the precise coordinate position of the robot and obtaining the pose 

of the robot in the environment requires the known map, the SLAM problem has been 

regarded as the chicken-egg-like problem. As discussed earlier that, since the presence 

of the noise always unpredictably and time-invariant follows the system process and 

measurement, the uncertainty on the perspective of solving the SLAM problem is 

sufficiently hard. However, there has been an existing method to appropriately 

addressing this problem, which is approaching the strategy based on the statistical 

estimation from the probabilistic perspective. From the probabilistic approach, there are 

two types of SLAM problems classified based on the posterior generated map, online 

SLAM, and full SLAM problem. The online SLAM problem involves the posterior 

estimation process over the momentary of robot pose along with the map [18]. 

Meanwhile, the full SLAM problem is a problem of estimating the posterior over all 

the robot's pose, instead of the single entire along with the map. Graphically, they can 

be illustrated as shown in Figure 2.2 and Figure 2.3, respectively. 
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Figure 2.2 The Graphical Representation of Online SLAM problem 

 
Figure 2.10 The Representation of Full SLAM problem[14] 

The difference between the two SLAM problems described above can be 

probabilistically recognized. Since the objective of online SLAM problem is to generate 

the marginalized pose of the robot along with map at the time , it can be   

probabilistically represented as follows 

 (2.8.4.1) 

where  refers to the pose of the robot relative to the global coordinate system 

representing both its spatial position and orientation , which 
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is not the x-coordinate of the robot pose. Meanwhile, m represents the map of 

environment. And  and  are respectively representing the measurement and 

control command. Meanwhile, the probabilistic consideration of full SLAM problem 

can be described as follows 

 (2.8.4.2) 

Regarding the graphical representation and Equation (3.7.2), it is clear to declare 

that the full SLAM problem is estimating all the entire pose  given the set of 

measurement  and . However, the full SLAM is beyond the scope of this 

dissertation. Furthermore, when the consideration of correspondence between the 

measurement and map is involved, the probabilistic representation of online SLAM can 

be described as follows. 

 (2.8.4.3) 

Note, the  represents the correspondence about the global coordinate system as 

discussed on the localization algorithm. Since the main objective solving feature-based 

SLAM problem is to approximate the location of all the landmarks on the environment 

and the marginalized position of the robot in the global coordinate system, all the 

Gaussian State Estimator discussed earlier can be applied. As the composed algorithm 

of SLAM, it requires the transition of the robot and the way how the robot detects the 

landmark. Additionally, the system requires to know how to differentiate the seen or 

unseen landmark when it performs a measurement and construct the appropriately new 

landmark from the raw measurement and find the correspondences. For these reasons, 

the motion model, direct-based observation model, inverse-point based observation, 

feature extraction, and landmark registration, and incremental likelihood principle are 

also used to build a feature-based online SLAM algorithm based on Gaussian State 

Estimation. It is discussed clearly in the second next chapter herein this dissertation. 
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Chapter III Adaptively Determining The Recursive 

Formulation of Noise Statistic for The Conventional 

Filtering Method  

The traditional filtering method requires the accurate system model and known 

noise statistic. However, in real applications, there is almost no specific system model 

caused by some factors, including the values of physical parameters, initial conditions, 

or noise characteristics. Furthermore, there is no exact manner to predefine all the noise 

statistics of the process, measurement, and corresponding covariances. Consequently, 

applying the filter without any modification approach might degrade the estimation 

method's optimality, which sufficiently increases the estimation error. Thus, all the 

uncertain parameters and noise statistics should be estimated as an effort to alleviate 

such effects. This estimation can be done during the filtering process by augmenting 

the adaptation mechanism, well-known as the Adaptive Filtering process.  

 The main objective of adaptive filters is to tune the filter gain based on the 

parametric variation or noise statistic that it is considered into the filtering process. The 

modification approach of adaptive filter leads to the conventional filter for having the 

ability to estimate the noise statistics and their corresponding covariance recursively. 

Henceforth, the time-varying noise statistic and covariance are available in the filtering 

process. The gain adaptation-based adaptive filter can be classified into three different 

approaches[44]. 

Joint Filtering of State and Parameters  

All the unknown parameter of the systems is considered as the additional state. 

Therefore, the new state vector contains the former and other state representing the 

unknown parameter. Both of them are then used to calculate the posterior estimate of 

the new state vector. There is a common method adopting the principle of Extended 

Kalman Filter and Particle Filter. Although the corrective gain is tuned by referring to 
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both former and additional states, this combination often causes numerical instability 

in general for some cases. 

On-line noise tuning  

According to the error measurement, the filtering performance is regarded whether 

there is divergence condition that occurs or not. If it is, the levels of measurement noise 

and or modeling uncertainties are then tuned by adopting some techniques. If it is not, 

the filtering process keeps the solution.  

Batch estimation of parameters  

In this approach, specific off-line techniques are adopted for estimating the system 

and noise statistic parameters based on a batch of measurements.  

All the types of gain adaptation-based adaptive filters aim to estimate the unknown 

parameters in the purposes to improve the gain effect to the posterior state estimate. In 

this thesis, the types of batch estimation of parameters are discussed. The discussion of 

the adaptive filter is used not only to improve the performance of optimal filtering type, 

Extended Kalman Filter but also to improve the performance of the robust filtering type, 

Smooth Variable Structure Filter.  

First, the dynamic system of the Gaussian Nonlinear System is considered for 

having the following characteristic. 

 
(3.1) 

where k refers to the discrete time index,  is the representation of state 

vector,  refers to the control vector, and   is the representation of 

measurement vector. Meanwhile,  and  are the small additive noises of the process 

and measurement, respectively, in which their corresponding covariances are denoted 

by  and , respectively. Furthermore,  and  refer to the state transition and 

measurement function, respectively. It is assumed that the characteristic of this dynamic 

system model is expressed as follows 
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(3.2) 

where  is Kronecker delta function. Whereas,  and  represent mean 

and covariance term, respectively. Since, the values of the process and measurement 

noise are nonzero mean but instead  and , respectively, then 

 
(3.3) 

Therefore, the equivalent formulation of equation (3.1) can alternatively be written 

as follows 

 
(3.4) 

To equip the conventional EKF for having an ability to recursively estimate the 

noise statistic, the Maximum A Posterior and Maximum Likelihood Estimation[4], [8] are 

separately used refers to Batch Estimation of Parameters. 

3.1  Designing Adaptive Extended Kalman Filter Using 

Principle of Maximum Likelihood Estimator and 

Expectation-Maximization 

Besides having an ability to approximate the process and measurement noise 

recursively, this adaptation approach allows the new filtering method for also estimating 

the corresponding covariance representing the uncertainty to the process and 

measurement. Firstly, the MLE and EM are separately used to derive the conventional 

EKF. It aims to find the unknown parameters of the noise statistic. The derivation seems 

to be unobservable because of the requirement of estimates values from the original 

form. However, the required values are essentially unavailable in the form of EKF. Thus, 

EKF is modified and improved to tune the estimated value given by the MLE and EM 

creation. This modification is adopted from the principle of one lag smoothing point 

introduced by Gustafsson in 2000[41], [63], [67]. This process allows the EKF for having 
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the tuned gain before it is proceeded to derive the main process of adaption. As a note 

that, the adaption process using MLE and EM creation also approximating the 

simplification into the multistep smoothing of some estimate values. Consequently, the 

risk of having the degradation to the filter stability is high. Additional to modify the 

EKF, the unbiased estimation is also involved to guarantee the filter quality in terms of 

stability and robustness. By conducting this process, the solution of recursive noise 

statistic is then almost complete. For the purpose of completing the last step of obtaining 

the time-varying noise statistic and their corresponding covariances, the weighted 

exponent strategy is involved. Finally, the optimal adaptive filter is done up to this point. 

However, the presence of non-positive definite covariance noise statistics should be 

concerned, which can diverge the filter solution. Accordingly, an additional Innovation 

Covariance Estimation is utilized, aiming to guarantee the time-varying covariance 

noise statistic of the process and measurement. This approach utilizes the principle of 

ICE[8], [61] to tune the quadratic error measurement, which can precisely give positive 

values to all the elements of the representative matrices of the covariances. The process 

of finding the recursive noise statistic and their covariance is detail discussed as follows. 

Firstly, the model of the non-Gaussian system presented by Equation (3.1) and all 

its characteristics are recalled. Secondly, assuming that  are the 

unknown parameters representing the noise statistic of the process and measurement 

and their corresponding covariances, respectively. It is assumed as the desire of the 

adaption process, which can be found by recursively estimating it. Afterward, the 

estimated values of  can be obtained by utilizing the Maximum Likelihood 

Estimation [8]. It can be expressed as follows 

  (3.1.1) 

where  is termed as the likelihood function of . It 

can be expanded as follows 
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(3.1.2) 

For ] and . Since 

Equation (3.1) is the first-order Markov process, Equation (3.1.2) can be expressed as 

follows 

 
(3.1.3) 

Then by considering that these prior knowledges are normally distributed, then 

Equation (3.1.3) can be derived as follows 

 

(3.1.4) 

by taking logarithm, it yields 

  

In this point, the role of Expectation-Maximization[71] is utilized to solve all the 

equations of suboptimal-Maximum Likelihood Estimation above. It aims to 

approximate both the process and measurement noise statistic as the suboptimal 

solution. Basically, the process under this principle follows two main steps, namely 

expectation-based strategy and maximization-based strategy. These steps are done 

sequentially. For the detail, it can be presented as follows 

This manner proceeds the derived equation by taking the expectation of the 

logarithm form . Analytically, it can be presented below 
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(3.1.5) 

Supposing that  is a representative form of all the constant  

 
(3.1. 6) 

then the equivalent form of Equation (3.1.5) can be alternatively written as 

 
(3.1.7) 

by definition that , thus Equation (3.1.7) can be sufficiently 

derived as follows 

 

(3.1.8) 

where  represent the objective function of . 

At this point the estimate noise statistic can be obtained by maximizing  function. 

It can be done by taking the partial derivative of  with respect to the unknown 

parameters , which are  and . Afterward it is proceeded by equating all the 

partial derivative to be equal to zero. Analytically, it can be expressed as 
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(3.1.9) 

Since  and  are assumed to be positive definite matrices, then it can be 

described as follows 

 
(3.1.10) 

For  represents the determinant matrix operation and  represents the trace 

of matrix. Therefore, the partial derivative of  with respect to and , can be 

respectively calculated as follows 

 
(3.1.11) 

 
(3.1.12) 

 
(3.1.13) 

 
(3.1.14) 

The complicated multi-step of smoothing term  and  in Equation 

(3.1.11) – Equation (3.1.14) is required to be simplified in order to ably continue the 

adaption process. It can be done by replacing  with  and  with . 

Similarly, it is conducted to the complicated form of  as well. Therefore, the 

following equations are presented 

 
(3.1.15) 

 
(3.1.16) 
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(3.1.17) 

 
(3.1.18) 

Regarding to Equation (3.1.15) – Equation (3.1.18), it can be noted that  is 

precisely not given by the original form of Extended Kalman Filter. For this reason, 

besides deriving its form under assumptions of Maximum Likelihood Estimation and 

Expectation-Maximization creation[8], the use of one step smoothing point is also 

involved aiming to tune the corrective gain. Besides that, it aims to provide the estimate 

values which cannot be found directly from the conventional EKF.  

By referring to Appendix A, the estimate value of  and   can be adopted 

from Equation (A.6) and Equation (A.13), respectively. However, the simplification of 

multistep smoothing conducted above might degrade the quality of the optimal 

Maximum Likelihood Estimation and Expectation-Maximization form. Therefore, in 

order to anticipate the risk, the unbiased estimation is involved. The process can be 

mathematically shown below 

First, by substituting Equation (A.7) into Equation (A.12), the general term of 

 in Equation (3.1.15) and Equation (3.1.17) can be sufficiently 

rewritten as 

 (3.1.19) 

Then replacing  with Equation (A.12), the general term of  in 

Equation (3.1.16) and Equation (3.1.18) can also be rewritten as  

 (3.1.20) 

Therefore, it yields 

 
(3.1.21) 
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(3.1.22) 

 
(3.1.23) 

 
(3.1.24) 

Since the innovation or error measurement  and its covariance  

are contained in the estimate values of the process and measurement noise statistic, thus 

 (3.1.25) 

Assuming that Equation (4.1.49) is satisfied 

 (3.1.26) 

It is noted that the corrective gain in Equation (A.5) can be derived as 

 
(3.1.27) 

It is obvious to obtain the following equations 

 (3.1.28) 

 (3.1.29) 

 (3.1.30) 

Once Equation (3.1.30) is calculated, then it is clear to have 

 

 

 

(3.1.31) 

Substituting Equation (3.1.31) into Equation (3.1.30), then 

 (3.1.32) 
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Now assuming that the expectation form of  and  are  

 (3.1.33) 

 (3.1.34) 

By substituting Equation (3.1.25) – Equation (3.1.34) into Equation (3.1.21) – 

Equation (3.1.24), it is clear to have  

 (3.1.35) 

 (3.1.36) 

 
(3.1.37) 

Once Equation (3.1.32) is calculated, it can be used compactly reform the noise 

statistic . The process is sequentially done as follows. The formulation of covariance 

matrix of measurement noise statistic  can be derived as 

 
(3.1.38) 

for 

 

(3.1.39) 

 

(3.1.40) 

Then by substituting Equation (3.1.25) – Equation (3.1.34) into Equation (3.1.21) 

– Equation (3.1.24), it is clear to also have 



上海大学博士学位论文 

50 
 

 

(3.1.41) 

where   refers to Equation (3.1.24), then Equation (3.1.41) becomes 

 

(3.1.42) 

where  

 
(3.1.43) 

Then the equivalent estimate values of  is obtained as 

 
(3.1.44) 

Similarly, since , and   in Equation (3.1.35) – Equation (3.1.37) are 

respectively , and  in Equation (3.1.21) – Equation (3.1.23), then their 

recursive forms of noise statistic are 

 
(3.1.45) 
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(3.1.46) 

 
(3.1.47) 

Note that Equation (3.1.45) – Equation (3.1.47) represent the properties of the 

unbiased recursive noise statistic of Equation (3.1.21) – Equation (3.1.24). Therefore, 

according to Equation (3.1.44) – Equation (3.1.47), the time-varying noise properties 

can be derived as follows 

 (3.1.48) 

 (3.1.49) 

 
(3.1.50) 

 
(3.1.51) 

Therefore, by applying the weighted exponent[4], [8], [13], [14], [79], in where the 

weighting coefficient  is formulated to replace the exponential , then the 

alternative formulation of Equation (3.1.48) – Equation (3.1.51) become as follows 

 (3.1.52) 

 (3.1.53) 

 

(3.1.54) 

 

(3.1.55) 

where the weighting exponent are expressed as  
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(3.1.56) 

where  is a fading factor satisfying  and  refers to -th weighting 

factor defined as  and satisfying . Up to this point, considering that 

 and  are positive definite matrices. Thus, to guarantee Equation (3.1.54) and 

Equation (3.1.55) to be positive definite matrices, the innovation covariance estimation 

is involved to the proposed method. It has been proven to be able to depress the filter 

divergence as introduced in[20], [21], [59], [61], [73]. The process can be summarized as 

follows. First, assuming that the following form is representation of innovation 

covariance indexed by  

 (3.1.57) 

by replacing   with , equation (3.1.54) and Equation (3.1.55) 

can be alternatively rewritten as follows  

 (3.1.58) 

 

(3.1.59) 

As described by Equation (3.1.57), the window size  plays a role of achieving 

an  accuracy.  is able to prevent the occurrence of the biased situation in  

by setting it to small value for the fast change of the dynamic system. Besides that, it is 

also able to improve the stability of the unbiased  by setting it to large value for 

the slow change of the dynamic system. Simply, the adjustment of window size is 

strongly depending on the characteristic of dynamic system which can empirically to 

be adjusted. Then, it is noted that the noise estimator is stable when the following 

definition is satisfied[6] 

 (3.1.60) 
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where  is a reserve factor that satisfying   1 and ) refers to the matrix trace. 

The stability equation expressed by Equation (4.1.83) shows that  also plays an 

important role as a threshold to know the incorrectness of the noise statistic when the 

measurement outliers occurs. By means, it is an issue when the ratio between  

and  is out of the threshold value  at current step k. Therefore, an additional of 

the innovation covariance estimation will obviously be keeping the stability of 

estimated value  and  by isolating the current innovation covariance 

 with its calculated value. Up to this point, the adaptive EKF can be 

graphically summarized as follows  

 

Figure 3.1 Working Principle of Adaptive EKF Based on MLE and ICE 
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3.2  Designing Adaptive Extended Kalman Filter Based on 

Maximum A Posteriori Estimation and Weighted 

Exponent 

Besides using Maximum Likelihood Estimation and Expectation-Maximization 

creation, the adaptive Extended Kalman Filter can be formulated by involving the 

principle of Maximum A Posteriori and Weighted Exponent. There is no difference in 

this strategy since the solution offered in this way is the same as the previous solution. 

But, in this way, the process adaption is more straightforward and faster. Sequentially, 

the Maximum A Posterior[13], [50], [58], [79], [82] is used to derive the traditional EKF by 

assuming that the unknown parameters are the noise statistic of the process and 

measurements, which are not zero mean anymore. Additional to these parameters, their 

corresponding covariance are also estimated. There are some estimate values, which 

cannot be adopted directly from the original form of EKF. Therefore, the same strategy 

of EKF improvement is also conducted. It involves the use of a one-lag smoothing point. 

Essentially, by performing this improvement, the estimation error is sufficiently 

reduced because of the smoothing process. This smoothing process is commonly 

intended to tune the corrective gain aiming to present more responsive and proper gain 

to the estimation process. The improvement process is conducted to make the 

mathematical derivation to be observable. It returns the sub-optimal solution, which is 

the embryo of the recursive noise statistic and covariance for both the process and 

measurement. Furthermore, the simplification of the multistep smoothing point is also 

concerned. Consequentially, it might reduce the stability and quality of the estimated 

unknown parameters, increasing the risk of having a non-positive definite character to 

the covariance of the noise statistic for either the process or measurement. For this 

reason, a certain approach should be concerned. In this research, the divergence 

suppression method is used to tune and reconstruct the covariance of the error state 

 of the smoothed EKF. This stage is also the reason that makes the approach of 
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Maximum A Posterior, and Maximum Likelihood Estimation is different. Before this 

stage is conducted, the unbiased estimation is also involved to guarantee that the 

adaptive EKF is still kept to have the unbiased characteristic to the estimated values. It 

is sequentially and separately conducted after performing the approach of the weighted 

exponent. In order to give a clear process of this method, the analytical process of 

Maximum A Posterior and Weighted Exponent Principle-assisted Extended Kalman 

Filter is presented below. Firstly, the model of the non-Gaussian system presented by 

Equation (3.1) – Equation (3.2) and all its characteristic Equation (3.3) – Equation (3.4) 

are recalled. It is then used as the base for the EKF formulation. 

Secondly, a classical EKF was estimated by utilizing MAP creation[56], [69], [71], [81], 

[102] in order to responsively generate the noise statistic for the next iteration based on 

the previous iteration. Assuming that, the unknown parameters are the process  and 

measurement   noise statistics with their process covariance   and measurement 

 which are characteristically assumed to be positive definite symmetric matrices. 

Assuming that   is a joint probability density function 

described as follows 

 (3.2.1) 

and considering that the conditional density function  

 
(3.2.2) 

where  and . It is regarded that ] 

plays no role in optimization, then by utilizing MAP the estimated values of 

 denoted by  can be calculated by solving the following 

expression 

 

(3.2.3) 

Where  can be obtained from the initial information. Then, by assuming 

that Equation (3.1) is first order Markov process then  and 
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 can be respectively factorized as follows 

 
(3.2.4) 

 
(3.2.5) 

Now, considering that Equation (3.2.5) is normally distributed, then 

 
(3.2.6) 

assuming that  represent a constant, then Equation (3.2.6) 

can be rewritten as follows 

 
(3.2.7) 

Similarly, Equation (3.2.7) is also normally distributed then 

 

(3.2.8) 

Assuming that  represents a constant, then Equation (3.2.8) can be 

rewritten as follows 
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(3.2.9) 

Substituting (3.2.7) and (3.2.9) into (3.2.2), then 

 
(3.2.10) 

by assuming that , then 

(3.2.10) can be rewritten as follows 

 

(3.2.11) 

At this point, by ignoring the constant and taking logarithm of Equation (3.2.11), yield 

 

(3.2.12) 

Substituting Equation (3.2.12) into Equation (3.2.2), then it is obvious the estimated  

can be obtained by taking partial derivative an equating its result to zero as expressed 

below 



上海大学博士学位论文 

58 
 

 

(3.2.13) 

 

Then , , , and  can respectively written as follows 

 
(3.2.14) 

 
(3.2.15) 

 
(3.2.16) 

 
(3.2.17) 

The complicated multi-step smoothing term  and  in Equation (3.2.14) – 

Equation (3.2.16) might cause inefficiency of the MAP estimate. Therefore, in order to 

find the conventional and efficient recursive form the simplification is needed. Note, 

that the recursive update process only utilizes the estimate value at time k-1 and k hence 

the simplification can be conducted by replacing  with  and  with 

. Therefore, the suboptimal of MAP noise estimator can be expressed as follows 

 
(3.2.18) 

 
(3.2.19) 
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(3.2.20) 

 
(3.2.21) 

As can be analyzed from the sequence equations above that the estimate value of 

  is not provided obviously by classical EKF. Therefore, modifying the original 

forms of EKF is required. It aims to compute the noise statistics estimator effectively. 

The process of modifying the EKF can be done by calculating the one-step smoothing 

of the EKF gain and its corresponding estimate value using the one-smoothing point 

algorithm[23], [67], [69] (see Appendix A).  

Referring to Appendix A, the estimate value of  and  can be adopted 

from Equation (A.6) and Equation (A.13), respectively. The simplification of multi-step 

smoothing conducted above might degrade the quality of MAP estimate. Thus, in order 

to depress this possibility, the unbiased estimation concept was utilized. The process 

can be described as follows. 

First, by substituting Equation (A.7) into Equation (A.13), the general term 

 in Equation (3.2.18) and Equation (3.2.20) can be rewritten as follows 

 (3.2.22) 

Then replacing  with Equation (A.13), the general term  in 

Equation (3.2.19) and Equation (3.2.21) can be written as follows 

 (3.2.23) 

and the suboptimal MAP estimation in (3.2.18) - (3.2.21) can be arranged as follows 

 
(3.2.24) 

 
(3.2.25) 
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(3.2.26) 

 
(3.2.27) 

Since the innovation  and its covariance  are contained in the 

process and measurement noise estimator, therefore 

 (3.2.28) 

Assuming that the equation below is satisfied 

 (3.2.29) 

then the corrective gain in Equation (A.12) can be derived as 

 
(3.2.30) 

 (3.2.31) 

 (3.2.32) 

 

 

 

(3.2.33) 

Substituting Equation (3.2.33) into Equation (3.2.32), it yields 

 (3.2.34) 

taking expectation of  and  then 

 (3.2.35) 

 (3.2.35) 

Now substituting Equation (3.2.28) – Equation (3.2.35) into Equation (3.2.24) – 
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Equation (3.2.26), it yields 

 (3.2.36) 

 (3.2.37) 

 
(3.2.38) 

However, to ease our calculation, the formulation of covariance matrix for the 

measurement noise statistic  should be derived first. It can be sequentially described 

as follows  

 
(3.2.39) 

for 

 

(3.2.40) 

Compactly, Equation (3.2.40) can be expressed as follows 

 

(3.2.41) 

Then by substituting Equation (3.2.28) – Equation (3.2.35) and (3.2.41) into Equation 

(3.2.27), it yields 
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(3.2.42) 

According to Equation (3.2.36), Equation (3.2.37), Equation (3.2.38), and Equation 

(3.2.42), it is known that  and  are , , , and , respectively. 

Therefore, it is clear to have the suboptimal recursive noise statistic as presented below  

 
(3.2.43) 

 
(3.2.44) 

 
(3.2.45) 

Since  in Equation (3.2.42) is  referring to Equation (3.2.27), then its recursive 

form can be derived as 

 
(3.2.46) 

where  
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(3.2.47) 

Then the equivalent estimate values of  is obtained as 

 
(3.2.48) 

Note that Equation (3.2.43), Equation (3.2.44), Equation (3.2.45), and Equation 

(3.2.48) represent the properties of unbiased recursive noise statistic of Equation (4.2.24) 

– Equation (4.2.27) , respectively. Therefore, according to Equation (3.2.43), Equation 

(3.2.44), Equation (3.2.45), and Equation (3.2.48), the time-varying noise properties 

can be derived as follows 

 (3.2.49) 

 (3.2.50) 

 
(3.2.51) 

 
(3.2.52) 

Where , , , and  are , , , and , respectively. Therefore by 

applying the weighted exponent[14], [69], [102] , where the weighting coefficient  is 

formulated to replace the exponential , then the alternative formulations of Equation 

(3.2.49) – Equation (3.2.52) become as follows 

 (3.2.53) 
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 (3.2.54) 

 

(3.2.55) 

 

(3.2.56) 

the weighting exponent is expressed as follows 

 
(3.2.57) 

where  is a fading factor satisfied  and  is the i-th weighting factor 

defined as  and satisfied . Next, to prevent the occurrence of a filter 

divergence, the covariance correction based on divergent suppression concept was 

applied. First, by referring to the covariance matching creation, the convergence 

condition can be described as follows 

 (3.2.58) 

where  is an adjustable coefficient presetting that satisfied  and  refers to 

other forms of innovation sequence that is . The main point of this 

process is correcting the error covariance matrix  when the convergence 

condition above is not satisfied. The contrary, Equation (3.2.53) – Equation (3.2.56) 

will directly be used in this proposed method. Mathematically, this analogy can be 

described as follows. 

 

(3.2.59) 

 (3.2.60) 

Where  is well-known as the adaptive weighting coefficient which is calculated 
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based on the fading factor formula [74], [97] as described as follows 

 
(3.2.61) 

 
(3.2.62) 

where  and  refers to the following equation 

 (3.2.63) 

 (3.2.64) 

Where  is representation of a matrix trace operator and  is forgetful factor 

satisfying  commonly adjusted to 0.95. Note that by increasing this factor 

will create a smaller proportion of the information before time k[14]. It causes the 

residual vector effect to become prominent so that the ability of filter tracking increase. 

Up to this point, then the Adaptive EKF can be graphically summarized as follows. 

 
Figure 3.2 Working Principle of Adaptive EKF Based on MAP - Weighted Exponent 
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3.3  Designing Adaptive Smooth Variable Structure Filter 

Based on Maximum A Posterior Estimation and 

Weighted Exponent 

Like Extended Kalman Filter, the Smooth Variable Structure Filter traditionally has 

no ability to update the noise statistic of the process and measurement recursively. For 

this reason, the modification approach is also recommended to be concerned before 

using it. As proposed in this dissertation, this modification is intended to effectively and 

responsively update the predefined noise statistic parameters. It leads to the definition 

of an adaptive filtering method. In this thesis, the adaptive approach based on a batch 

estimation of parameters is also conducted as an effort to improve the capability of 

SVSF for estimating purpose. In order to equip SVSF with an ability to recursively 

provide the responsive noise statistic, the maximum a posterior and weighted exponent 

are used in this experiment. Firstly, SVSF is mathematically derived using a maximum 

posterior to get the suboptimal solution of the time-varying noise statistic. Due to the 

lack of multi-step smoothing values on the estimated variables, the SVSF is firstly 

modified. The discrete index of some complicated estimate values seems to be 

unobservable. Therefore, as the purpose of continuing the derivation process, the 

simplification is conducted. However, the modification and simplification might 

degrade the quality of the adaptive SVSF or even lead to the divergence condition. 

Consequently, the new adaptive form of SVSF has the risk of being unstable, having 

bias conditions, and inaccurate solutions. It is because of the presence of a nonpositive 

definite matrix for covariances of noise statistics either to the process or measurement. 

For this reason, the unbiased estimation is also involved. It is used to guarantee the 

solution given by the adaption process. Besides that, the divergence suppression method 

is also concerned to guarantee that the adaptive solution under this approach has high 

convergence. This suppression method is conducted after performing the weighted 

exponent used to more derive the suboptimal solution given by maximum a posterior 
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as the final effort to keep the stability, robustness, and effectiveness of SVSF as the 

robust estimation method. The detailed process of this adaption is presented in this 

dissertation as follows. 

Firstly, it is assumed that the dynamic system model used in this process can be 

recalled from the Equations (3.1). It is completed with the characteristic of the noise 

statistic for the process and measurement as well as their corresponding covariances as 

expressed by Equation (3.2) – Equation (3.4). Secondly, in order to ease the 

mathematical derivation, the summary of the traditional form of SVSF is represented 

as follows 

 (3.3.1) 

 (3.3.2) 

 (3.3.3) 

 (3.3.4) 

 (3.3.5) 

 (3.3.6) 

 
(3.3.7) 

 

(3.3.8) 

 
(3.3.9) 

 (3.3.10) 

 (3.3.11) 

 (3.3.12) 
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 (3.3.13) 

 (3.3.14) 

Note that all the representative equation above are the original form of SVSF for 

one-cycle of working. It is assumed that the noise statistic is predefined and kept to be 

constant for the whole estimation process. This form aims to reduce the estimation error, 

which is the different values of the predicted and real measurement. Accordingly, the 

innovation or error measurement is then used to generate the corrective gain by using 

the principle of the sliding model concept. And as the final stage of SVSF, the corrective 

gain is used to update the state value and its covariance and posteriori error 

measurement, which is also predefined at the beginning. However, in the real 

application, it is impossible to define those parameters accurately by means they are 

partially known or even unknown. It might degrade the filtering performance. For these 

reasons, the adaptive SVSF algorithm is mainly concerned. The process was initially 

started by reconsidering the prior information of the nonlinear dynamic system is 

modeled as described in Equation (3.1). Secondly, it is considered that the process noise 

, measurement noise  and initial state vector  are assumed to be mutually 

uncorrelated for any discrete time index  or , then the mean  and covariance 

 of the process and measurement noise can be redefined in order to clearly 

analogize the identity of the system. 

  
(3.3.15) 

where  refers to Kronecker delta function. The prior information above is initially 

assumed to be not equals to zero. Additionally,  and  are positive definite 

symmetric matrices, then the MAP estimates of , , , , and  can be obtained 

by calculating the maximum value of the following conditional probability density 

function 

 (3.3.16) 
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where  and . Next, applying the Bayes rule 

and referring to the property of the conditional probability, where  is proportional to 

. Therefore, since its marginal likelihood  plays no 

role in the optimization, then 

 (3.3.17) 

where  is regarded as the constants obtained from the prior information. 

Then a posteriori distribution  can be calculated by multiplying 

 with  as derived below 

 
(3.3.18) 

which can be derived and expanded as follows 

 
(3.3.19) 

 

 

(3.3.20) 
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which can be derived and expanded as follows 

 

(3.3.21) 

Therefore, by substituting both Equation (3.3.18) and (3.3.20) into Equation 

(3.3.17), it yields 

 
(3.3.22) 

Now supposing that 

 
(3.3.23) 

referring Equation (3.3.23) that the constants are obtained from the initially 

predefined parameters, there Equation (3.3.21) can be compactly simplified as follows 

 

(3.3.24) 

Furthermore, to find the maximized parameter of the posterior distribution; firstly, 

taking a logarithm as the monotonic function to simplify the calculation; secondly, find 

the first derivative of  with respect to the , , , and , separately; then finally 

ended by equating it with zero. These steps are organized and derived as follows 
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 (3.3.25) 

Then , ,  and  are respectively presented as follows 

 
(3.3.26) 

 
(3.3.27) 

 
(3.3.28) 

 
(3.3.29) 

The complicated multi-step smoothing term  and  in Equation (3.3.26) 

– Equation (3.3.29) might cause inefficiency of the MAP estimate, therefore to find the 

conventional and efficient recursive form the simplification is needed. Note that the 

recursive update process only utilizes the estimate value at time  and , thus the 

simplification can be conducted by replacing  with  in Equation (3.3.26) 

and Equation (3.3.28) and  with  in Equation (3.3.26) – Equation (3.3.29). 

Therefore, the suboptimal of MAP noise estimator can be expressed as follows 

 
(3.3.30) 

 
(3.3.31) 

 
(3.3.32) 
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(3.3.33) 

As can be analyzed from the sequence equations above that the estimate value of 

 is not provided by the SVSF. Therefore, modifying the original form of SVSF is 

needed to execute the noise statistics estimator effectively. The process of modifying 

the SVSF can be done by calculating the one-step smoothing of the SVSF gain and its 

corresponding estimate value using the fixed-point smoothing algorithm[41], [63], [67]. (see 

Appendix B)  

According to Appendix B, the estimate value  and  can be adopted from 

Equation (B.10) and Equation (B.19), respectively.  Next, to guarantee that the 

recursive process and measurement noise statistics are unbiased, the modified 

suboptimal MAP noise estimators are then derived refer to unbiased estimation.  

First, by substituting Equation (B.11) into Equation (B.19), the general term 

 in Equation (3.3.30) and Equation (3.3.32) can be rewritten as follows 

 (3.3.34) 

Similarly, replacing  with Equation (3.3.52), the general term  in 

Equation (3.3.31) and Equation (3.3.33) can be written as follows 

 (3.3.35) 

and the suboptimal MAP estimation in Equation (3.3.30) – Equation (3.3.33) can 

be rearranged as follows 

 
(3.3.36) 

 
(3.3.37) 

 
(3.3.38) 
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(3.3.39) 

Since the innovation  and its covariance  are contained in 

the process and measurement noise estimator, therefore  

 (3.3.40) 

and referring to state error covariance in Equation (B.20), it is obvious to have 

 
(3.3.41) 

Next, considering that the expectations  and  , therefore, 

 (3.3.42) 

 (3.3.43) 

Then by substituting Equation (3.3.40) – Equation (3.3.43), it is clear to have 

 (3.3.44) 

 (3.3.45) 

 

(3.3.46) 

 

(3.3.47) 

Note that , , , and  are the representation of the suboptimal MAP 

estimation in Equation (3.3.36) – Equation (3.3.39), thus the unbiased MAP estimation 

can be summarized as follows 
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(3.3.48) 

 
(3.3.49) 

 
(3.3.50) 

 
(3.3.51) 

The time-varying noise estimator is proposed. According to the unbiased 

suboptimal MAP estimator calculated above, the time-varying unbiased noise estimator 

are derived as follows 

 (3.3.52) 

 (3.3.53) 

 (3.3.54) 

 
(3.3.55) 

the following alternative forms are regarded as the modified form of the time-

varying unbiased noise statistics estimator Equation (3.3.52) – Equation (3.3.55). This 

method refers to the fading memory weighted exponent method and then by utilizing 

the weighting coefficient  to replace the exponential .  

 (3.3.56) 

 (3.3.57) 



上海大学博士学位论文 

75 
 

 (3.3.58) 

 
(3.3.59) 

where the weighting coefficient  can be calculated as follows 

 
(3.3.60) 

where  is fading factor, which is satisfied  and  is the -th 

weighting factor, which is defined as  and satisfied  . Next, to prevent 

the occurrence of filter divergence, the covariance correction step based on the 

divergence suppression concept [7] is involved. First, the convergence condition is 

derived referring to the covariance matching creation as described below 

 (3.3.61) 

where  is an adjustable coefficient presetting which is satisfied ( ) and the 

residual sequence . By executing Equation (3.3.60) if the 

convergence condition Equation (4.3.61) is satisfied, Equation (3.3.56) – Equation 

(3.3.59) are applied otherwise the correction method of the covariance  is 

suggested against the divergence occurrence. 

 (3.3.62) 

where  is known as the adaptive weighting coefficient which is calculated based on 

the fading factor formula [27,28] as summarized as follows 

 
(3.3.63) 

 (3.3.64) 

 (3.3.65) 
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(3.3.66) 

 
(3.3.67) 

where  refers to the matrix trace,  is the forgetful factor satisfied (typically to be 

set 0.95). Note that increasing the factor will create a smaller proportion of the 

information before time k. It causes the residual vector effect to become prominent, 

thus consequently the filter tracking ability will increase. Finally, the summary of 

Adaptive SVSF can be presented by the following flowchart. 

 
Figure 3.3 Working Principle of Adaptive SVSF Based on MAP and Weighted 

Exponent 
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3.4  Designing Adaptive Smooth Variable Structure Filter 

Based on Maximum Likelihood Estimation and 

Expectation-Maximization Principle 

For the second proposed method, the maximum likelihood estimation and 

expectation-maximization are used as the batch estimation of parameters-based 

adaptive filtering. Likely, the purpose of this method is to equip the Smooth Variable 

Structure Filter with the recursive noise formulation corresponding to its traditional 

formulation. The main objective of this approach is to let the SVSF having the ability 

to estimate noise statistic and their corresponding covariance recursively.  

Assuming that  represents the unknown noise statistic of the 

nonlinear system described by Equation (3.1). Then its estimated value  can be 

obtained by utilizing MLE as expressed as follows 

 (3.4.1) 

where  is the likelihood function of . It can be expressed 

below 

 

(3.4.2) 

For  and . Since Equation (3.1) is the first-order 

of Markov process then Equation (4.4.2) can be factorized as follows 

 
(3.4.3) 

Then by considering that these knowledges comply with Gaussian distribution, 

then Equation (3.4.3) can be rewritten as follows  
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(3.4.4) 

taking logarithm of Equation (3.4.4), it yields 

 
(3.4.5) 

In this experiment, the role of EM estimation is utilized to solve the derived MLE 

solution above. It aims to approximate both process and measurement noise statistic. 

Basically, there exist two main steps in EM namely expectation-based and 

maximization-based solution[8], [57], [60], [64], [71], [72]. Both are conducted sequentially. Its 

process can be described as follows 

Under Expectation-Based Solution (E-Step)  

The expectation process can be done by first taking the conditional expectation and 

sequentially equating the result to zero as shown below  

 

(3.4.6) 

Suppose that 

 
(3.4.7) 



上海大学博士学位论文 

79 
 

then Equation (3.4.6) can be re-expressed as follows 

 
(3.4.8) 

By definition . Then by applying the identity 

, Equation (3.4.8) can be derived as follows 

 
(3.4.9) 

where  refers to an objective function of . 

Under Maximization-Based Solution (M-Step) 

At this point the estimated noise statistic can be obtained by maximizing . It can 

be done by taking partial derivative with respect to  and equating to zero as 

can be calculated as follows 

 
(3.4.10) 

Since  and  are positive definite matrix it can be described that 

 (3.4.11) 

For  and  refer to the determinant and trace of matrix, respectively. Then, 

it is obtained 

 
(3.4.12) 
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(3.4.13) 

 
(3.4.14) 

 
(3.4.15) 

The complicated multi-step of smoothing term  and  in Equation 

(3.4.12) – Equation (3.4.15) might cause inefficiency. For this reason, the simplification 

is approached at this point. It can be done by replacing  with  and   

with . 

 
(3.4.16) 

 
(3.4.17) 

 
(3.4.18) 

 
(3.4.19) 

At this point, it is clear that  is not provided by the classical SVSF. Hence, 

SVSF was modified/improved. The process of modifying SVSF was done by 

calculating the one-step smoothing of the SVSF gain and its corresponding estimate 

value using the fixed-point smoothing algorithm[41], [63], [67]. (see Appendix B) 

According to Appendix B, the estimate value  and  can be adopted from 

Equation (B.10) and Equation (B.19), respectively. The simplification of the 

complicated multistep smoothing in Equation (3.4.16) – Equation (3.4.19) might reduce 

the optimal solution obtained by MLE-EM. For this reason, the recursive noise statistics 

Equation (3.4.16) – Equation (3.4.19) are derived as follows. 
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Substituting Equation (B.11) into Equation (B.19), the general term 

  in Equation (3.4.16) and Equation (3.4.18) can be rewritten 

 (3.4.20) 

Then substituting Equation (4.4.39) into  

 (3.4.21) 

then the equivalent form of Equation (3.4.16) – Equation (3.4.19) are 

 
(3.4.22) 

 
(3.4.23) 

 
(3.4.24) 

 
(3.4.25) 

Since the innovation   and its covariance  are contained in 

the process and measurement noise estimator, therefore  

 (3.4.26) 

Referring to the state error covariance in Equation (B.20), then 

 (3.4.27) 

Next, assuming that their expectations are  

 (3.4.28) 

 (3.4.29) 

Then by substituting Equation (3.4.26) – Equation (3.4.29) into Equation (3.4.22) 

– Equation (3.4.25), the expectation of the noise statistics is 
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 (3.4.30) 

 (3.4.31) 

 
(3.4.32) 

 
(3.4.33) 

Note that, , and  in Equation (3.4.30) – Equation (3.4.33) are the 

representation of Equation (3.4.22) – Equation (3.4.25), thus the unbiased noise statistic 

properties can be calculated as follows 

 
(3.4.34) 

 
(3.4.35) 

 
(3.4.36) 

 

(3.4.37) 

Up to this point, some derived equations are presented in order to ease the adaption 

process. Considering that the original Joseph covariance is able to be derived then the 

alternative measurement noise statistic covariance is  
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(3.4.38) 

Note that the trace of matrix equals to the trace of its transpose. Therefore 

 

(3.4.39) 

Differentiating with respect to , then 

 
(3.4.40) 

Equating to zero, it yields 

 

 

 

(3.4.41) 

Substituting Equation (3.4.41) into Equation (3.4.38) it is obtained 

 

 
(3.4.42) 

Suppose that the following equation is satisfied 

 (3.4.43) 

Then by substituting Equation (3.4.43) into Equation (3.4.41), it yields 

 (3.4.44) 

Hence, the formulation the covariance matrix of measurement noise statistic  

can be derived as follows 

 
(3.4.45) 

where 
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(3.4.46) 

 

(3.4.47) 

Then it can be obtained 

 
(3.4.48) 

where 

 

(3.4.49) 

Therefore, it is clear to have 

 
(3.4.50) 

As can be seen that Equation (3.4.37) has the complicated formulation. It might cause 
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the reduction of filter accuracy. Therefore, by referring to Equation (3.4.38) – Equation 

(3.4.50) above, then Equation (3.4.37) is replaced with Equation (3.4.50). Furthermore, 

the time-varying noise estimator is proposed in this dissertation. According to Equation 

(3.4.34), Equation (3.4.56), Equation (3.4.57), and Equation (3.4.50), then respectively 

their time-varying unbiased noise properties are 

 (3.4.51) 

 (3.4.52) 

 
(3.4.53) 

 
(3.4.54) 

where , , , and  are , , , and , respectively. Now by 

applying the weighted exponent [8], [14], [58], [74], where the weighting coefficient 

 is formulated to replace the exponential , then the alternative form of  Equation 

(3.4.51) - Equation (3.4.54) become as follows  

 (3.4.55) 

 (3.4.56) 

 (3.4.57) 

 

(3.4.58) 

where the residual measurement  and the weighting coefficient is 

expressed as follows 

 
(3.4.59) 

where  is fading factor satisfied  and   is the -th weighting factor 
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defined as  and satisfied . Referring to the definition mentioned by 

Equation (4.2), both  and  should be positive definite symmetric matrix. 

Unfortunately, the complicated formulation shown in Equation (3.4.58) will present the 

negative definite matrix for the measurement noise statistic covariance. In order to 

depress this possibility, the alternative formulation adopted from the innovation 

covariance estimator concept[8], [21], [57], [59], [61] was used. It can be presented below.  

Assuming that the innovation covariance is expressed as follows 

 (3.4.60) 

As described by Equation (3.4.60), the window size  plays a role of achieving 

an  accuracy.  is able to prevent the occurrence of the biased situation in  

by setting it to small value for the fast change of the dynamic system. Besides that, it is 

also able to improve the stability of the unbiased  by setting it to large value for 

the slow change of the dynamic system. Simply, the adjustment of window size is 

strongly depending on the characteristic of dynamic system which can empirically to 

be adjusted.  Then, it is noted that the noise estimator is stable when the following 

definition is satisfied. 

 (3.4.61) 

where  is a reserve factor that satisfies  and  refers to trace of matrix. 

The stability equation expressed by Equation (3.4.61) shows that  also plays an 

important role as a threshold to know the incorrectness of the noise statistic when the 

measurement outliers occurs. By means, it is an issue when the ratio between  

and  is out of the threshold value  at current step . Therefore, an additional 

of the innovation covariance estimation will obviously be keeping the stability of 

estimated value  and  by isolating the current innovation covariance  

with its calculated value. Then by replacing  with , Equation (3.4.58) 
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becomes 

 

(3.4.62) 

At the last, the working principle of the adaptive SVSF can be graphically summarized 

as shown in Figure 3.4 below 

 

Figure 3.4 Working Principle of Adaptive SVSF Based on MLE and ICE  
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Chapter IV Applying Proposed Method for 2D 

Feature-Based SLAM Algorithm 

This chapter presents the process of constructing the feature-based SLAM 

algorithm. All filtering methods presented in the previous chapter are applied in both 

simulation and real application. This implementation requires the motion model used 

in the prediction step, and the measurement model used to predict the measurement and 

calculate the innovation error. Moreover, the Jacobian matrixes of the state, control, and 

measurement needs to define. There are two types of experiment in this dissertation 

which are based on a realistic environment-based simulation and real-time-based 

simulation. 

 

Figure 4.1 Flowchart of Feature-Based SLAM Algorithm 

4.1 Simulation-Based Experiment 

The simulation is realistically conducted by referring to the parameter of 

Turtlebot2 which equipped by the laser scanner. The robot moves depend on the 

different velocity of the right and wheels. It is henceforth called a control command 

which can be measured utilizing the odometry sensor. Naturally, the robot generates its 
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path after executing all the control command with assumption both the system and 

control are not perturbated by any small noise. The robot is analogized to sense and 

measure the features in every step of state transition. Considering that the location of 

all the features are known by the user, therefore, the corresponding is known. Once, the 

reference is available, the robot is assumed to inaccurately moves because of some 

factors and the measurement is noisy due to incorrect robot base and unavoidable error 

perturbating the distance and bearing data. Consequently, the filtering-based SLAM 

algorithm is used to overcomes these issues by estimating the robot path and features 

coordinate in the global environment.    

4.1.1 Robot Configuration and Motion Model 

Assuming that the spatial and orientation of robot pose is denoted as follows 

 

(4.1.1.1) 

Where  represents the discrete time index. Since the robot configuration and motion 

principle is graphically depicted in Figure 4.1, thus, the next position of the robot can 

be known once the current pose of the robot and control command are given.  

 
Figure 4.2 Kinematic Configuration of The Robot 

Figure 4.1 represents the pose of the robot on the 2D planar environment as the 
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global frame representation. It refers to the distance of the separated wheels  and 

the length between the robot's outer wheel  to the point of the turn causing angle . 

As can be seen from Figure 4.1, the next location is achieved after the right  and left 

speed  are propagated. In which they are the perturbated velocity caused by the turn 

and move factor .  

 
(4.1.1.2) 

where, the right  and left   are the true control command given by the used. 

Now by assuming that the factors are random and unknown. Thus, there will be two 

different types of motion classified based on the diversity of speed. In which, this factor 

will make the robot move with or without a turn.  

Then, by assuming that the right and left velocity are the same, the robot will move 

without changing its heading. Mathematically, it is expressed as follows  

 

(4.1.1.3) 

Contrary, when the right and left velocity are not same, in a certain angle the robot 

will turn depending on this diversity. Therefore, the analogy of this motion can be 

expressed as follows 

 

(4.1.1.4) 

Where A is for the first case and B is for the second case. It is noted that the motion 

model is used to predict the robot state. Therefore, the conditional probability 

 is now satisfied. Moreover, the Jacobian matrices which are 

calculated based on the partial derivative of function f(.) with respect to the state and 
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control are described as follows (see Appendix). 

 

(4.1.1.5) 

As known that there are two different motion model in this case, therefore, the 

specified Jacobiana Fs is presented as follows. 

 
(4.1.1.6) 

 
(4.1.1.7) 

Up to this point, the state and its covariance can be calculated as follows 

 (4.1.1.8) 

 (4.1.1.9) 

Where f(.) represents the motion model in Equation (4.1.1.3) – Equation (4.1.1.4). 

Meanwhile  is calculated using the following equation. 

 
(4.1.1.10) 

where  and  are direct variable obtained based on the relative effect and  

refers to the Jacobian matrix calculated by taking the partial derivative of function f(.) 

with respect to the control (see Appendix).  

 

(4.1.1.11) 

Remembering that the motion model in this case is depend on the different velocity of 

right and left, therefore, the construction of  are two. For the first  when the 

velocities are different all the completeness in Equation 4.1.6 is sequentially presented 

as follows  
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(4.1.1.12) 

 
(4.1.1.13) 

 
(4.1.1.14) 

 
(4.1.1.15) 

 
(4.1.1.16) 

 
(4.1.1.17) 

Meanwhile, the right  and left speed  are the same, then all the part of the partial 

derivative of f(.) with respect to the control are sequentially described as follows 

 
(4.1.1.18) 

 
(4.1.1.19) 

 
(4.1.1.20) 

 
(4.1.1.21) 

 
(4.1.1.22) 

 
(4.1.1.23) 
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4.1.2 Measurement Model 

As commonly known that the state vector is the SLAM perception not only 

contains the robot pose but also all the feature location. Therefore, its representation is 

modelled as follows. 

 
(4.1.2.1) 

where   represents the robot pose variable at time  in previous discussion. 

It consists both the spatial location and its heading or orientation. Meanwhile  

gives the information of the -th landmark coordinate consisting both the coordinate 

respect to x-axes  and y-axes  for  at time . It is 

noted that in the simulation-based experiment this set of measurement is determined 

when the robot senses the corresponding feature location in the environment using the 

measurement model as discussed below. Therefore, the set of observed landmarks is 

described as follows  

 

(4.1.2.2) 

Where N is the number of landmarks available on the global coordinate system as 

the point-based map. Using the certain method of adding feature to state vector, the 

composed state vector can be fully presented as follows 
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(4.1.2.3) 

Where  can be calculated using the direct-point-based observation as expressed 

below. The landmark detection is illustrated as shown in Figure 4.3.  

 

Figure 4.3 Landmark Detection   

where  refers to the position relative to the robot in local frame, 

and  or  refers to the laser scanner displacement. Meanwhile, a single 

measurement consists the value of .  Therefore, given the current pose of the robot 

, the location of the laser scanner in Equation (4.1.2.4), the direct-based observation 

model can be mathematically described in Equation (4.1.2.5). 

 

(4.1.2.4) 
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Sequentially, once the single landmark is found after applying the feature extraction 

algorithm, its values  is then used to produce the distance  and 

bearing . It can be calculated as follows  

 

(4.1.2.5) 

Now, in order to make this observation satisfy the probabilistic model, the noise is 

assumed to always follows the measurement. It perturbates the measured distance  

and bearing . Then, by supposing that these small noises are denoted as 

, which corresponding to the distance  and bearing , the final 

measurement model returns the measured landmark .  

 
(4.1.2.6) 

Based on Equation (4.1.2.6), the predicted measurement and innovation sequence error 

are satisfied. 

 (4.1.2.7) 

 (4.1.2.8) 

Where h(.) represents the measurement model and  is predicted measurement in 

Equation (4.1.2.6) and  is true corresponding measurement. The corresponding 

covariance of the predicted measurement is calculated using the following equation. 

 
(4.1.2.9) 

Where H is partial derivative of h(.) with respect to the state (see Appendix).  

 
(4.1.2.10) 

where 
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 (4.1.2.11) 

 (4.1.2.12)  (4.2.8) 

 (4.1.2.13) 

4.2 Experiment Based on The Real-Time Application 

 In order to present more extensive and reliable validation, the proposed method is 

also practically implemented to solve the real-time application. It employs the real 

experiment data provided by University of Sydney. Accordingly, this subsection 

presents a step of constructing the algorithm based on all the filtering-based strategies 

in the previous Chapter. The real data is adopted from the real vehicle that was moved 

around the Victoria Park, Sydney, Australia. This vehicle is utilized to perceive the 

possible information of the park by using the Laser Scanner. Based on this information, 

the goal is to construct the feature-based map. Besides that, this map is generated 

together with the vehicle path. For this reason, the additional exteroceptive, odometry 

sensor, was also equipped to the vehicle. It is used to know the linear and angular 

velocity per time-duration. The odometry data is then used to process the filter as the 

path estimator. The GPS was also completed to collect the coordinate of vehicle pose. 

Inaccuracy of GPS is motivation to get the estimate values. Therefore, the feature-based 

SLAM is designed, in which it requires the motion model, observation model, Jacobian 

calculation, and Data Association.  

4.2.1 Motion Model based on Linear and Angular Velocity 

 Different from the one used in the verification based on simulation above, the 

motion model is designed based on the following vehicle. This modelling refers to the 

real experiment conducted by Dr. Jose Guivant from the University of Sydney. The 

configuration of this vehicle is shown in Figure 4.4 
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Figure 4.4 Kinematic Configuration (a) and Real Appearance of Vehicle (b) 

Where the parameters of this vehicle is given as follows 

 

By using the data provided by the odometer and GPS, the user can easily to know the 

robot pose. However, both types of data are bad and imprecise due to the present of 

noise. Additionally, the data of measurement of laser scanner is also noisy. Therefore, 

as the objective of this experiment, it is quite difficult to determine the accurate pose of 

vehicle and location of the feature. Accordingly, by this analogy the SLAM algorithm 

is applied to address this kind of issue. Initially, the reference trajectory is generated 

from the robot path based on GPS and odometer. And based on these benchmarks, the 

use of filtering method is approached. A filtering-SLAM algorithm predict and update 

the pose of the robot as well as construct the landmark-based map, simultaneously. The 

prediction requires the motion model as the state transition method caused by the 

control command. For this reason, the following motion model is presented.  

 

(4.2.1.1) 

It is noted that this modelling system is also provided together with the dataset. Next, 

the Jacobian matric F can be described as follows. 
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(4.2.1.2) 

 Similar to the previous discussion, up to this point, the prediction step for the state 

and its corresponding covariance used for all algorithms presented in Chapter 3 is 

satisfied.  

4.2.2 Measurement Model for Second Experiment 

 The measurement is intended to predict the location of the landmark, when the 

current pose of the robot is given together with set of sensed/detected landmark in the 

global environment. It is also the initiated step before calculating the innovation 

sequence error and gain of filtering. The model of this observation can be illustrated in 

Figure below. 

 

Figure 4.5 Landmark Detection 

 All newly observed landmarks are combined together as the state vector. Therefore, 

given the current pose of vehicle and raw data of laser scanner, the feature extraction 

and data association are conducted before it is proceeded to the step of measurement. 

In this experiment, the feature or landmarks are the tree trunks. Based on the raw 
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sensing data, it is detected using the feature extractor. It is noted that this algorithm is 

also provided together with the dataset. Then, the extracted or detected landmark is 

measure as the prediction step. It is done by using the following measurement model.  

 
(4.2.2.1) 

Since the measurement is predicted, then the innovation sequence error and gain of 

filtering-based SLAM algorithm can be determined. However, the calculation also 

requires the Jacobian matrix H. It is done by taking partial derivative of h(.) with respect 

to the state as can be presented as follows 

 
(4.2.2.2) 

For 

 
(4.2.2.3) 

 
(4.2.2.4) 

 (4.2.2.5) 

Where  and  are robot and landmark pose, respectively. 

Therefore, the partial derivative with respect to the state (including the landmark pose) 

is 

 
(4.2.2.6) 

 
(4.2.2.7) 

4.2.3 Data Association 

Although the feature extraction is already given, in this experiment still requires 

the data association. It is used to find the correspondence between the detected feature 

and the previously observed landmark. Naturally, the data association is a step used to 
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check whether the newly observed landmark is available in the state vector or not. 

Therefore, if it is not stored the location of the feature is added into the state vector. 

Otherwise, the existing one is chosen as the base. The data association is important 

before conducting a measurement step. There are some techniques used, but the 

common nearest neighbor is approached in this experiment. The reason is, the 

landmarks have a large distance to each other, therefore, it can be separated or uniquely 

identified easily. The nearest neighbor firstly sets the associated gate to restrict the 

possible number of decisions to be made, and the associated gate 's preliminary screen 

makes the echoes a candidate. The Associated Door is a subspace in the tracking field. 

The center is located in the forecast of the tracked target position. The size of the 

configuration will ensure that the appropriate likelihood of an echo can be obtained to 

some degree. The nearest neighbor method always selects a point trace that falls into 

the association gate and is closest to the tracked target position. Usually, it is judged by 

the statistical distance. Through analysis, it is not difficult to find that the nearest 

neighbor data association is primarily appropriate for tracking domain targets, but only 

for a limited number of target instances or target tracking of a sparse area only. Defining 

the statistical distance: Hypothesis before the first k-fold scan, we have identified the 

N path. New results for the first k cycles are 𝑍!" 	for	𝑗 = 1,2, . . . , 𝑁. In the association 

gate of track i the difference vector between the observed j and track i is defined as the 

diversity of the measured value and the predicted value. The residual error is given as 

follows 

 (4.2.3.1) 

Where h(.) is the measurement model. And by referring to the definition this residual 

has the covariance 𝑆#!. Therefore, the mentioned statistical distance is  

 (4.2.3.2) 

It is noted that 𝑑#! is known as the Mahalanobis distance of the invention, taking into 

account the uncertainty of the expected calculation. Based on this judgement, then by 
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setting a parameter 𝛾$  to specifies the gate, the decision is made based on the 

following equation 

 <  (4.2.3.3) 

It means that if the norm vector of Mahalanobis distance  is smaller than the 

threshold , the associated landmark is selected. Contrary, the newly observed 

landmark is added as the state vector with appropriate index. Finally, by referring to all 

the designed filtering in Chapter 3 and sequent discussion in this chapter, the feature-

based SLAM algorithm is generally given as follows. 

 

Algorithm Feature-Based SLAM Algorithm  

Require: Initial State Estimate, Covariance, Convergence Rate, and Initial Error 
1: loop 
2: Prediction Step: If proprioceptive data is available 
3: Propagate the state estimate 
4: Compute the Jacobian of f(.) 
5: Propagate the covariance relative to the state 
6: Update: If the observation data is available 
7: Compute the innovation sequence error 
8: Calculate Gain 
9: Update the State, and Covariance 
10: Compute the noise statistic 
11: end loop 

 

This algorithm is applicable for all adaptive filters that have been described in 

Chapter 3. For the record, the implementation using EKF-SLAM and SVSF-SLAM 

stage 10 is not required. This confirms that while adaptive filtering can recursively 

update all associated noise properties, conventional methods cannot. As a further note, 

the parameters of the EKF-SLAM algorithm do not need to have an initial definition of 

the convergence rate as is required in SVSF-SLAM. 
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Chapter V Experiment, Result, and Discussion 

This chapter presents the verification and validation of the proposed method that is 

implemented for solving feature-based SLAM problem both in simulation-case and 

real-environment. These steps are initiated by comparing some existing algorithms and 

the proposed method, ASVSF-SLAM algorithm. As the objective of the SLAM 

problem, all the presented algorithms are used to estimate the truth robot path and 

features location. For the real environment, the reference trajectory and features 

location are provided by the GPS data adopted from the popular Victoria Park dataset. 

Meanwhile, the simulation case uses the generated path and measurement by assuming 

there is no noise following the control and measurement. Up to this point, there will be 

the real/provided data and estimated data given by all the filtering-based algorithms. 

For this reason, some parameters are used to compared all mentioned algorithms, such 

as the RMSE, prediction and update time, detected landmark, and Monte Carlo 

simulation. Based on these parameters, the effectiveness and performances are 

respectively verified and evaluated. 

5.1  Realistic-Simulation of Feature-Based SLAM 

For the simulation, the robot trajectory and features are designed. They are 

considered as the reference or the true data unfollowed by the noise. The second 

assumption is that a known-locating robot is equipped with the odometer and laser 

scanner used to respectively detect the wheel revolution and measure the feature. As 

the tradition, a robot moves when it executes the control command given by the users. 

However, all the control commands are perturbated with random-small noise to either 

right and left wheels in every step. Since, this command is velocity of the right and left 

wheel, the robot executes the noisy velocities which makes the generated path diverges 

from the truth. Additionally, the random error is also assumed to disturb the given 

distance and bearing data when the robot senses the location of the robot. By this 
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analogy, the velocity-based motion model (in Chapter 2) and direct-based measurement 

are used. It is clear to see, in order to apply the motion model, both the distance between 

the left and right wheel, and displacement of the laser scanner should be given. Then, 

by adopting the parameters from a real robot platform, Turtlebot 2, the parameterization 

for the simulation case is presented in Table 5.1 below. 

Table 5.1 Parameterization of All the Algorithms 

No Parameter Value 
1 W (length of body) 33 cm 
2 dls (displacement of laser scanner)  14 cm 

Up to this point, all the complement initially requires to execute the motion model 

are satisfied. As the user, the control commands are known and sent to the robot to make 

robot moves. Suppose that the robot is initially placed on the global map and there is 

no noise follows the command, the reference trajectory and map are assumed as 

depicted by the following figure.  

 
Figure 5.1 Reference Path and Map 

 The initial pose of the robot is assumed to be  

 

(5.1.1) 

Now, assuming that the robot strongly believes about its initial position, the initial 

covariance of this robot pose can be defined as 
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(5.1.2) 

Besides that, the initial noise statistics should be defined in order to applied all 

the algorithms. There are two simulations with different initial additive noise (as can be 

seen in Table 5.1) in this verification process. It is intended to validate the consistency 

and stability of the proposed method when the noise is increased.  

Table 5.2 The Defined Noise Statistic for Two Different Simulation Parameter 

Num. Sim 𝑞% 𝑄% 𝑟% 𝑅% 𝛾 𝑒&,% 
1st Sim. 

20.3,
3𝜋
1807

(

 8
0.3) 0

0
3𝜋
180

)	9 20.2,
6𝜋
1807

(

 8
0.2) 0

0
6𝜋
180

)	9 
1.5e
-2 

[0	0]( 

2nd Sim. 
20.4,

5𝜋
1807

(

 8
0.4) 0

0
5𝜋
180

)	9 20.5,
6𝜋
1807

(

 8
0.5) 0

0
6𝜋
180

)	9 
1.5e
-2 

[0	0]( 

Up to this point, the performance of the former EKF and alternative SVSF-based 

SLAM algorithm can be compared. The comparison uses the Root Mean Square Error 

as the term to evaluate the convergence of the proposed method. 

 
Figure 5.2 Performance of EKF and SVSF-based SLAM algorithm for 1st Simulation 

(Left) and 2nd Simulation (Right) 
According to Figure 5.2, it can be declared that both optimal and robust filtering 

method can successfully estimate the robot path and map. This graphical result also 

proves that the SVSF-SLAM, can be alternatively replace the EKF-SLAM algorithm. 
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Moreover, in order to see clearly the EKF-SLAM performance, it is directly compared 

with its advanced, EKF-MAPWE-SLAM algorithm and AEKF-MLEEM-SLAM 

algorithm. They are compared in terms of RMSE for their Estimated Path Coordinate 

(EPC) and Estimated Map Coordinated. Remembering, that they are initially simulated 

referring to all initialization and parameterization shown in Table 5.1. Then, to prove 

that both adaptive EKF-SLAMs are convergence, the result is presented with the 

graphical performance as shown in Figure 5.3. 

 
Figure 5.3 Performance of the EKF, AEKF-MAPWE and AEKF-MLEEM-SLAM 

Algorithm for 1st Simulation (left) and 2nd Simulation (right). 
Graphically, Figure 5.3 shows that by involving adaptive filtering method, the 

performance of EKF-SLAM improves. It is proven from smaller gap between the 

estimated and reference path. The consistency and stability of adaptive filtering method 

can also be evaluated by this figure. In which, there is no much effect to the AEKF-

SLAM algorithm when the noise statistic is increased. However, it is hard to see clearly 

the quality of estimated path and map by only referring to Figure 5.3. It is especially 

for the performance of adaptive EKF in estimating map. For this reason, the evaluation 

is also conducted by analyzing the comparison of the estimated path and map in term 

of RMSE. 
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(Top) 

 
(Bottom) 

Figure 5.4 Estimated Path of EKF-SLAM, AEKF-MAPWE-SLAM, and AEKF-
MLEEM-SLAM algorithm for 1st Simulation (Top) and 2nd Simulation (Bottom) 

 

Figure 5.4 depicts the different RMSE values of the estimated path coordinate, 

including the robot's spatial coordinate  and the robot heading . According to 

Figure 5.4, it can be now seen clearly the diversity between the EKF-SLAM and its 

advanced algorithm. Based on the estimated path for -coordinate both the Adaptive 

EKF using MAP-WE with a divergence suppression method, and Adaptive EKF using 

MLE-EM with an Innovation Covariance Estimation are better than EKF-SLAM. It is 

shown from the smaller values generated with respect to the time step in Figure 5.4. 

The estimated path coordinate for  and -coordinate given by the adaptive filter are 
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also better than EKF-SLAM. Besides that, the stability and consistency of the adaptive 

EKF-SLAM algorithms are also proven. It can be seen from their performance (2nd 

Simulation), which is stable even when the initial noise statistic is increased. 

 Furthermore, the performance is also evaluated based on the value of RMSE for 

the estimated map coordinate. It can be seen from Figure 5.5  

 
(Top) 

 
(Bottom) 

Figure 5.5 Estimated Map of EKF-SLAM, AEKF-MAPWE-SLAM, and AEKF-
MLEEM-SLAM algorithm for 1st Simulation (Top) and 2nd Simulation (Bottom) 

 

Figure 5.5 depicts the performance of EKF-SLAM, AEKF-MAPWE-SLAM with 
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divergence suppression method, and AEKF-MLEEM-SLAM with Innovation 

Covariance Estimate (ICE). According to the 1st Simulation, it might be hard to see the 

performance of adaptive EKF in estimating the map. But the significant difference can 

be evaluated from the 2nd Simulation. Therefore, it can now be stated that the adaptive 

EKF-SLAM algorithm significantly improves its predecessor with the guaranteed 

stability and consistency under invariant additive noise. 

Additionally, the performance of adaptive SVSF-based SLAM algorithms is also 

validated. Like the previous manner, this validation involves the RMSE to evaluate its 

capability to estimate the robot path and map. First of all, the convergence of all 

algorithm based on Adaptive SVSF is evaluated. It can be done by seeing the graphical 

performance in estimating the path and map for both 1st and 2nd simulation. 

 
Figure 5.6 Performance Comparison between SVSF-SLAM, ASVSF-MAPWE and 

ASVSF-MLEEM-SLAM Algorithm for 1st Simulation (Left) and 2nd Simulation 
(Right) 

Figure 5.6 illustrates the difference in performance between SVSF-SLAM, 

ASVSF-MAPWE-SLAM, and ASVSF-MLEEM-SLAM algorithm. Thus, it can be 

declared that the adaptive version significantly improves the performance of SVSF-

SLAM algorithm when the small additive noise statistics are predetermined in Table 

5.1. The consistency and stability are also guaranteed. It can be seen from Figure 5.6 

which shows that the increment of the initially predetermined noise statistic gives no 
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significant effect to the performance of all adaptive SVSF. Although, the effectiveness 

of ASVSF-SLAM algorithm in estimating the robot path can be easily evaluated from 

Figure 5.6, but its capability to estimate the map is difficult to be evaluated. Therefore, 

the graph of RMSE values for the estimated path and map coordinate is presented. 

 
(Top) 

 
(Bottom) 

Figure 5.7 Estimated Path Coordinate of SVSF-SLAM, ASVSF-MAPWE and 
ASVSF-MLEEM-SLAM Algorithm for the 1st Simulation (Top) and 2nd Simulation 

(Bottom) 
Figure 5.7 depicts the performance of SVSF-SLAM, ASVSF-MAPWE, and 

ASVSF-MLEEM-SLAM Algorithm for both estimating the spatial coordinate of a 

wheeled mobile robot and its heading direction in radian. According to Figure 5.7, it is 

clearly to see that all the adaptive filter relative to SVSF successfully improve the 
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SVSF-SLAM algorithm. It is proven based on better RMSE values for all the 

benchmarks, in which all the RMSE values are smaller than the SVSF-SLAM algorithm. 

This result proves that the previous statement that is stated based on the graphical 

performance (Figure 5.6). According to two different simulations in Figure 5.7, the 

consistency and stability of Adaptive SVSF are also satisfied. Next, to see the diversity 

of adaptive SVSF-SLAM performance, their RMSEs of estimated map coordinate are 

also presented as can be seen from Figure 5.8. 

 
(Top) 

 
(Bottom) 

Figure 5.8 Estimated Map Coordinate of SVSF-SLAM, ASVSF-MAPWE and 
ASVSF-MLEEM-SLAM Algorithm for 1st Simulation (Top) and 2nd Simulation 

(Bottom) 
According to Figure 5.8, it can be declared that the adaptive SVSF-SLAM 
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algorithm is better than the SVSF-SLAM algorithm in approximating the landmark in 

two different simulation. It can be seen from its performance in estimating the y-

coordinate of all the landmark. However, similar to Figure 5.5, the performance of 

SLAM algorithm in estimating the x-coordinate of the landmark is difficult to be 

evaluated. For this reason, Table 5.3 and Table 5.4 are presented to respectively show 

the different SLAM algorithm’s performance in term of RMSE for Estimated Path and 

Estimated Map Coordinate.  

Table 5.3 RMSE values of The Feature-Based SLAM algorithm based on EKF, 

AEKF-MAPWE, AEKF-MLEEM, SVSF, ASVSF-MAPWE, and ASVSF-MLEEM 

(1st Simulation) 

No Name of Algorithm 
Estimated Path 

Coordinate 
Estimated Map 

Coordinate 

x y  x y 

1. EKF-SLAM 9.6867 14.980 0.1240 14.8801 18.8703 

2. AEKF-MAPWE-SLAM 5.8164 5.9584 0.1214 13.3618 16.1547 

3. AEKF-MLEEM-SLAM 5.1243 4.0567 0.1247 19.3317 23.1409 

4. SVSF-SLAM 5.9065 10.045 0.1099 2.0095 2.2145 

5. ASVSF-MAPWE-SLAM 3.0666 2.3328 0.0985 11.4657 11.0790 

6. ASVSF-MLEEM-SLAM 3.2337 2.5043 0.0985 10.8512 11.1995 

 

Table 5.3 presents the different values of RMSE for the estimated path coordinate 

and the estimated map coordinate for all the algorithm in the 1st Simulation. According 

to Table 5.3, two adaptive EKF-SLAM algorithms give significant improvement to the 

EKF-SLAM algorithm. The RMSE reduction shows it to almost all benchmark. This 

values also highlight the previous analysis which is conducted based on Figure 5.2 – 

Figure 5.4. Besides that, by comparing to its former version, all adaptive SVSF-SLAM 

algorithm also shows great result indicated by smaller RMSE values for all the 

benchmark.  

Table 5.4 RMSE values of The Feature-Based SLAM algorithm based on EKF, 
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AEKF-MAPWE, AEKF-MLEEM, SVSF, ASVSF-MAPWE, and ASVSF-MLEEM 

(2nd Simulation) 

No Name of Algorithm 
Estimated Path Coordinate Estimated Map 

Coordinate 

x y  x y 

1. EKF-SLAM 10.666 16.333 0.7913 27.7747 32.0915 

2. AEKF-MAPWE-SLAM 5.1149 3.4892 0.1265 20.0421 24.2682 

3. AEKF-MLEEM-SLAM 5.1421 3.5478 0.1262 19.7067 23.8953 

4. SVSF-SLAM 5.5823 9.7952 0.1045 17.1811 14.4686 

5. ASVSF-MAPWE-SLAM 4.6835 2.3872 0.0989 13.2414 11.5277 

6. ASVSF-MLEEM-SLAM 4.6835 2.3807 0.0987 15.4925 13.5943 

Table 5.4 shows that all the proposed algorithms are effectively solving the problem 

of feature-based SLAM. According to Table 5.3 and Table 5.4, the AEKF-SLAM 

algorithm shows better improvement to its conventional algorithm, EKF-SLAM 

algorithm. The effectiveness of using an adaptive approach to the traditional filtering is 

also proven by all the performance of ASVSF-SLAM in this 2nd Simulation.  

Based on Table 5.3 and Table 5.4, it is clear to declare that the AEKF and ASVSF 

can be alternatively used for feature-based SLAM algorithm. The noisy process and 

measurement can be represented based on how large the initial additive noise statistic. 

Accordingly, the AEKF-SLAM algorithms can be applied when the uncertainty is 

average, and the ASVSF-SLAM can be used for either condition of the uncertainty is 

significant or not. Furthermore, referring to the Bayes-Rules, which composed by 

Maximum A Posterior (MAP) and Maximum Likelihood Estimation (MLE), there 

should be different for the optimal and robust result of adaptive by using the MAP and 

MLE, since the prior knowledge is assumed to be available. However, they can be 

characteristically different since the supportable methods are respectively adopted from 

the divergence suppression method and Innovation Covariance Estimation. Regarding 

the discussion in Chapter 3, the divergence suppression method is intended to correct 

the predicted covariance matrix about the state in the prediction step. The derived 
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formulation does not have any effect because of the gain. Meanwhile, the use of 

Innovation Covariance Estimation is applied once the corrective gain is calculated, and 

it replaces the covariance of innovation error. Therefore, it is not surprising when the 

result of the AEKF-MLEEM-SLAM is good and better for the AEFK-MAPWE-SLAM; 

the ASVSF-MLEEM is not better than the ASVSF-MAPWE-SLAM algorithm (see 

Table 5.3 and Table 5.4). The reason is that there is a different formulation of corrective 

gain between EKF and SVSF, which of course directly affected due to the change of 

additive noise statistic. However, the designed adaptive filtering for both EKF and 

SVSF is successfully designed. Additionally, the proposed method in this dissertation 

also successfully validated in terms of effectiveness and stability. By means, since the 

conventional algorithm, EKF or SVSF-SLAM, does not have the ability to respond to 

the system through the recursive noise statistic, their proposed method does have. 

Obviously, it overcomes the issues of keeping noise statistic to be same whole the 

estimation process is not recommended 

5.2  Verification using the Victoria Dataset 

Besides comparing the proposed algorithm in the simulation case, its effectiveness 

and performance are also verified and evaluated for the real application. In which all 

the algorithms are applied to solve the feature-based SLAM problem of vehicle in 

Victoria Park. The data of this experiment was collected by Nebot (2009) at the 

Australian Centre for Field Robotics, Sydney. It was done using a vehicle (a truck) 

equipped with a laser scanner, odometer, and GPS sensor. The vehicle moves in 4 

kilometers along the park over a total time about 26 minutes. The trees are detected 

during the vehicle is being moved based on the measurement in each step. The local 

minima detection is used as the algorithm for extracting the feature in the scanning data. 

This tree extraction function is provided together with the dataset compatible with 

Matlab. The Victoria Park consists of some trees separated with large distance which 

makes the common data association applicable for this experiment. In this dissertation, 
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the experiment is conducted on a Dual-Core Intel Core i5-2.3 GHz. 

The interest is that this dataset has a bad quality on the odometer data with much 

unexpected perturbations and the truth given by GPS’s data seems not accurate (see 

Figure 5.9). The trees in the park are distinctive features detectable by the laser scanner, 

which makes this dataset becomes the popular option to validate any feature-based 

SLAM algorithm. Different from the above simulation, this validation approaches the 

second creation of the motion model, measurement and all the relative Jacobians in 

Chapter 4. At first, in order to implement all algorithms introduced in Chapter 3, the 

following characteristic are defined as the parameterization step.  

Table 5.5 The initial noise statistic 

𝛾 𝑒&,% q0 Q0 r0 R0 
0.8 ?00@ A

0.02
2𝜋
180

B 8
0.02)	 0

0
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180
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𝜋
180

D A
0.05)	 0

0
𝜋
180

)B 

Where q0 contains the small additive noise following the linear velocity (m/s) 

and angular velocity (rad/s), and Q0 refers to covariance matrix of the control. 

Meanwhile, r0 is small additive noise following the range (m) and bearing (rad) of laser 

scanner measurement, and R0 refers to the covariance matrix relative to the 

measurement. It is noted that these parameters will be kept to be constant by EKF-

SLAM and SVSF-SLAM algorithm, but they are recursively updated by AEKF-SLAM 

and ASVSF-SLAM algorithm. Due to the closed similarity between AEKF-MAP-

SLAM and AEKF-MLE-SLAM algorithm and ASVSF-MAP-SLAM and ASVSF-

MLE-SLAM, this experiment only considers AEKF-MLE-SLAM and ASVSF-MLE-

SLAM. In this case, the truth of vehicle path can be seen from the following figure.  
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Figure 5.9 GPS-generated Vehicle Path  

With a task to locate the robot pose and the landmark position in Victoria Park, 

all the feature-based algorithms are applied. This implementation is can be illustrated 

in Figure 5.10. The number of landmarks is reduced by using the feature elimination 

method based on the negative evidence information. It aims to determine more reliable 

representation after the data association is applied.  

 
Figure 5.10 Performance of Different SLAM algorithm 
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As can be seen, that the proposed method gives significant improvement 

compared to the conventional algorithm, EKF-SLAM. It can be validated according to 

the smoother and better performance in estimating the robot path. As the second effort 

to validate the effectiveness of the proposed method, the obtained number of landmarks 

is also analyzed. Graphically, it can be seen as follows. 

 
Figure 5.11 Number of The Stored Landmarks in 1600 (s) 

 
Figure 5.11 illustrates the number of stored landmarks after executing all the 

control command. The proposed method is able to store less compared to the 

conventional one after applying the data association. In which the collected coordinates 

are kept and add new landmark. Additionally, the computational cost containing the 

prediction and update stage is also evaluated in this verification.  Theoretically, this 

comparison lies on the different of update time process only. It is because all the 

algorithms perform the same prediction step. The following figure represents the 

duration of all the algorithms in predicting and updating the state (robot pose and map). 
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Figure 5.12 Update Time  

5.3  Consistency Validation of The Proposed Algorithm 

In all the theoretical convergence properties used in the last section, it is 

assumed that the Jacobians are evaluated at the true observation point and at the true 

landmark location. However, in fact of SLAM application both the true of robot pose 

and landmark position are not available/visible. Accordingly, the Jacobians must be 

measured at the approximate values. It is well known that this kind of linearization error 

can be incorrect. For this reason, the traditional metrics used to measure the efficiency 

of the estimation process, such as root mean squared (RMS) error (as conducted above), 

do not include consistency information. It is because they do not take into account the 

uncertainty returned by the filter. In order to provide more extensive verification and 

cover the lack of validation, the both the average of RMSE and Normalized 

Approximation Error Squared (NEES) are used to evaluate the all algorithms under 

repeated runs of Monte Carlo Simulation.  

The NEES can be applied by measuring the mean squared value of the error that 

is normalized through the covariance matrix of all filtering-based strategy (e.g. EKF, 

AEKF, SVSF, or ASVSF). The NEES can be calculated when the density of probability 
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is unknown but the availability of ground truth is known. This type of term is commonly 

used to characterize whether the filtering is consistence or not. The average NEES can 

be computed based on determination of the average values of Mahalonobis distance of 

the estimator. 

 
(5.2.1) 

The filter is consistence if the following properties are satisfied. 

 (5.2.2) 

 (5.2.3) 

Linguistically, it means that the filter is unbiased and the estimated covariance 

is matched to its theoretical one. Therefore, by the evaluation in term of average NEES 

can also prove whether the designed filter in this dissertation is unbiased or not.  Under 

the assumption that the filter is consistent and roughly linear-Gaussian, the Mahalanobis 

complies with the chi-square distribution with the dimension 𝑑𝑖𝑚(𝑥"). Consequently, 

the average value of 𝜖(𝑘) tends towards the state dimension as N approaches infinity.  

 (5.2.4) 

As well-known that the average NEES can also be implemented based on the real-

time application (single-online run, N=1) and simulation (multiple N-runs or Monte 

Carlo Simulation). Given N runs and the average error of estimator, then the average 

NEES is computed as follows 

 
(5.2.5) 

Given a hypothesis of a consistent linear-Gaussian filter, (𝑘)	has 𝜒) density 

with 𝑁. 𝑑𝑖𝑚(𝑥") degree of freedom. Therefore, for 3-dimentional of robot state, the 

95% probability concentration region for  𝜖(̅𝑘) is bounded by the interval [0.1198, 

9.7218] for real-time application (N=1). Meanwhile, in the case of simulation with 

constant velocity and known number and corresponding landmark, the probability 
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concentration region is bounded by the interval [2.6701 3.3491]. In which the interval 

is also known as acceptance region which used to evaluate the average NEES. Filter is 

considered to be consistent, if its average NEES falls into this region. Contrary, the filter 

is optimistic and conservative if its average NEES rises the upper bound and lower 

bound, respectively.  

 
Figure 5.13 Average RMSE of different algorithm under Monte Carlo Simulation with 

N=1 
 

It is clear shown in Figure 5.13, that the proposed method significantly improves 

the existing methods. The SVSF-SLAM algorithm can also be alternatively used to 

replace the EKF-SLAM. This result is detail presented in Table 5.3.  
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Figure 5.14 Average NEES for Robot Pose of Different Algorithms 

Figure 5.14 presents the graphic of average NEES for each step performing the 

SLAM-algorithm. However, the validation cannot be easily conducted only by referring 

to this result. Accordingly, each performance is separately validated by involving the 

firstly mentioned interval, [0.1198, 9.7218]. It is computed based on the N-runs=1 of 

Monte Carlo Simulation.  

 
Figure 5.15 Average NEES of Robot Pose for EKF-SLAM Algorithm with two-sided 

95% region (N=1)  
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Figure 5.16 NEES’s Average of Robot Pose for SVSF-SLAM Algorithm 

 
Figure 5.17 NEES’s Average of Robot’s Pose for AEKF-SLAM Algorithm
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Figure 5.18 NEES’s Average of Robot Pose for ASVSF-SLAM Algorithm 

Figure 5.15 – Figure 5.18 shows the average NEES of Robot Pose for EKF-

SLAM, AEKF-SLAM, SVSF-SLAM, and ASVSF-SLAM algorithm. According to the 

graphical representations with cyan-color bounds as the benchmark to evaluate, in short 

or single-run Monte Carlo Simulation, only the proposed method (adaptive filtering) 

remains consistent. Contrary, based on Figure 5.15 and Figure 5.17, both the EKF-

SLAM and SVSF-SLAM show their inconsistency in estimating the robot pose. 

However, indicated by the values which frequently rises the upper bound, the SVSF-

SLAM algorithm is better than EKF-SLAM algorithm. Therefore, based on the real-

time verification, our hypothesis is satisfied and true. IN which, the robustness offered 

by SVSF makes SVSF can replace the EKF-SLAM algorithm. Moreover, the adaptive 

filtering method can be alternatively used to improve the consistency of any filtering 

since it is designed with checking its optimal solution with an unbiased estimator (see 

Chapter 3). The following Table is presented in order to clearly compare all the 

algorithm. 
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Table 5.6 Comparative Result Based on Average RMSE and NEES for different 

algorithm 

Metrics EKF-
SLAM 

SVSF-
SLAM 

AEKF-
SLAM 

ASVSF-
SLAM 

NEES Robot Pose 11.3658 10.6287 0.7887 0.5948 
RMSE Robot Pose 5.1078 4.5829 2.6711 1.9346 

RMSE Robot Heading 0.0803 0.0820 0.0551 0.0438 
RMSE of Landmark 81.5989 80.0655 77.1436 74.5689 

 According to Table 5.6 above, all the statement declared previously is proven. All 

the average NEES analysis is correct that the adaptive filtering is consistent compared 

with the conventional one. Table 5.6 also presents the average RMSE over the Monte 

Carlo Simulation. Based on these average values, the optimality of the proposed method, 

ASVSF-SLAM is also proven. It is shown from all its values which are lower than the 

other algorithms. 

5.4  Verification Based on The Simulation with Fixed Velocity 

and Known Landmark in the Global Map 

 If the previous analysis is conducted referring to the average NEES of robot pose 

when N=1 in the real application, Victoria Park-based SLAM problem, the following 

verification is intended to ensure that the consistency of the proposed method also 

appropriate for long-duration of Monte Carlo Simulation. For this case, it is assumed 

that the objective of all the algorithm presented in Chapter 3 is to estimate the following 

reference path and map.  

 
Figure 5.19 Reference Trajectory with 20 Static Features 
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Knowing the initial position of the robot in the global environment, the robot 

moves based on the constant linear 0.2 m/s and angular velocity 0.025 rad/s. Referring 

to the motion model and measurement model designed in the second creation of Chapter 

4, the robot moves repeatedly over times of 500. It is evaluated under the Monte Carlo 

Simulation with N=200. Therefore, the acceptance region is bounded by the interval 

[2.6701 3.3491]. In other to illustrates that the simulation is realistic, the process is 

assumed to not accurate caused by the noise, the odometer used to sense the rotated 

wheels are also noisy, and the measurement sensor is noisy. For this reason, the 

characteristic noise statistics are defined in this simulation; q=[0.0071;0.0283] 

corresponding to the linear (m/s) and angular velocity (rad/s) and Q=[0.0071^2 0;0 

0.0283^2] corresponding to its covariance. Meanwhile, the observation noise 

perturbating the measurement of z is defined r=[1;10] relative to the distance (m) and 

bearing (deg), and 𝑅 = [1)	0; 0	10𝜋/180)]. Theoretically, these noises are recursively 

updated when implementing the EKF-SLAM and SVSF-SLAM. Moreover, the rest 

parameter such as γ and initial error are defined as the same used in the previous 

verification. Contrary, they are kept constant/invariant. Based on this parameterization 

the following result is presented.  

 
Figure 5.20 Average RMSE of Robot Pose and Heading under Monte Carlo 

Simulation with N=200 
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 Based on the result depicted in Figure 5.20, the proposed methods present a better 

performance and accuracy of estimating the robot pose and heading. It is proven and 

indicated by the smaller values for both the average RMSE whole the step. Although, 

it again validates the effectiveness and optimality of ASVSF-SLAM algorithm, its 

consistency cannot be evaluated and analyzed according to this result. For this reason, 

the corresponding average NEES is presented as follows. 

. 

 
Figure 5.21 Average NEES of Robot Pose and Heading under Monte Carlo 

Simulation with N=200 
Figure 5.21 shows that by bounding the graphical result with the determined 

acceptance regions, all the algorithms are relatively consistent except the EKF-SLAM 

algorithm. Like the previous way, the separately determined results are presented.  

 
Figure 5.22 Average NEES given by the EKF-SLAM algorithm under the 

Monte Carlo Simulation with N=200 
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Figure 5.23 Average NEES given by the SVSF-SLAM algorithm under the 

Monte Carlo Simulation with N=200  

 
Figure 5.24 Average NEES given by the AEKF-SLAM algorithm under the 

Monte Carlo Simulation with N=200 

 
Figure 5.25 Average NEES given by the ASVSF-SLAM algorithm under the 

Monte Carlo Simulation with N=200 
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Now, it clear to declare that the consistency of all algorithm except the EKF-

SLAM are guaranteed. To more extensive present the proof of the effectiveness, 

accuracy, consistency of the proposed algorithm, Table 5.7 is presented.   

Table 5.7 Average RMSE and NEES of all algorithms 

Metrics EKF-
SLAM 

SVSF-
SLAM 

AEKF-
SLAM 

ASVSF-
SLAM 

NEES Robot Pose 3.7163 2.9782 3.2315 3.1853 
RMSE Robot Pose 0.4449 0.8020 0.4217 0.9254 

RMSE Robot Heading 0.4449 0.0762 0.4217 0.9254 
NEES of Landmark 2.3166 1.9010 1.8357 1.7499 
RMSE of Landmark 0.4807 0.4650 0.4467 0.4208 
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Chapter VI Conclusion 

6.1  Summary  
 The popular filtering method commonly used to solve the feature-based SLAM 

algorithm is the Extended Kalman Filter. Alternatively, the role of robust filtering type, 

Smooth Variable Structure Filter, can replace EKF as the main state and parameter 

estimation. However, the original formulation of Extended Kalman Filter and Smooth 

Variable Structure is not completed with an ability to recursively estimate the noise 

statistic of the process and measurement as well as their corresponding covariance. 

Consequently, when they are predetermined and kept to be constant throughout the 

estimation process, the filter has a big possibility leading to the divergence condition 

respecting the original reference. For this reason, certain modification is strongly 

recommended to be concerned before using an either optimal and robust estimator. 

There are many types of modifications, as mentioned and introduced in the previous 

chapter. And the most popular one is tuning the corrective gain through the adaptive 

noise statistic, which is termed-well as an adaptive filter. Herein this dissertation, four 

different adaptive filters distinguished by the presence of guarantor techniques, 

Divergence Suppression Method and Innovation Covariance Estimator, are discussed, 

aiming to either improve EKF and SVSF. It is separately done by involving the 

Maximum A Posterior together with Weighted Exponent and Maximum Likelihood 

Estimator together with Expectation-Maximum Creation. The detailed derivation 

obtaining the adaptive form of EKF and SVSF is discussed. Furthermore, by adopting 

some completeness used for the feature-based SLAM problem, differently, there are 

converted to be a SLAM algorithm. Furthermore, they are realistically simulated with 

the presence of small additive noise and their corresponding covariance following the 

process and measurement. Of course, this analogy is intended to satisfy the probability 

condition caused by uncertainty. By using RMSE for the estimated path coordinate and 

the estimated map coordinated, different SLAM algorithm is compared and evaluated. 
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Accordingly, as the proposed strategies, both EKF and SVSF equipped with an adaptive 

manner to estimate the noise statistic, shows better and significant improvement than 

their conventional algorithm. Based on the lastly previous chapter, their effectiveness 

in term of accuracy and consistency are validated. The contribution containing in this 

dissertation can be repeatedly presented as follows. 

 

6.2  Future Research 
As mentioned earlier in the previous Chapters, theoretically, the Smooth Variable 

Structure Filter can be combined with any filtering method such as Extended Kalman 

Filter, Quadrature Kalman Filter, Cubature Kalman Filter, etc., based on the smoothing 

boundary layer. Essentially, its mechanism allows selecting the correspondingly 

appropriated gain by initially comparing it with the boundary limit variable. By this 

statement, the author plans to combine the Adaptive Smooth Variable Structure Filter 

and Adaptive Extended Kalman Filter. Besides that, the use of different stability and 

robust guarantor makes the adaptive filter with divergence suppression methods, and 

innovation covariance estimation is characteristically different. Therefore, mixing both 

adaptive filters can give a hybrid formulation, which, of course, improves the 

conventional filter. As the second plan, the author plans to design the hybrid filter based 

on Extended Kalman Filter and Smooth Variable Structure Filter. Afterward, the results 

are applied to alternatively and effectively solving the feature-based SLAM problem of 

wheeled mobile robot.  
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Appendix 

A. Smoothed Formulation of EKF based on one-step smoothing point 

  (A.1) 

  (A.2) 

  (A.3) 

  (A.4) 

  (A.5) 

  (A.6) 

Referring to Equation (A.1) – Equation (A.6), the estimate value of  can 

now replace the term of  in the original form of EKF, then the rest forms of 

smoothed EKF are chained as follows 

  (A.7) 

  (A.8) 

  (A.9) 

  (A.10) 

  (A.11) 

  (A.12) 

  (A.13) 

Alternatively, it can be done using, the RTS smoother technique as presented below. 

Given the Kalman Gain in Equation (A.11), the smoothed forms are  

 (A.13) 

 (A.13) 

Where  
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 (A.13) 

 (A.13) 

B. Smoothed Formulation of SVSF based on one-step smoothing point  

 (B.1) 

 (B.2) 

 (B.3) 

 (B.4) 

 (B.5) 

 (B.6) 

 
(B.7) 

 

(B.8) 

 (B.9) 

 (B.10) 

then considering that the prior state  replaces the term of  in the 

normal SVSF, the rest part of modified SVSF are chained as follows 

 (B.11) 

 (B.12) 

 (B.13) 

 (B.14) 

 (B.15) 
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(B.16) 

 
(B.17) 

 
(B.18) 

 (B.19) 

 

(B.20) 

 (B.21) 

Alternatively, these smoothed forms can be compactly computed by referring to RTS 

principle. Given the SVSF Gain in Equation (A.18) and recalled as K, the smoothed 

forms are  

 (B.22) 

 (B.23) 

Where  

 (B.24) 

 (B.25) 
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C. The Foundation of the Feature-Based SLAM Algorithms 

In the SLAM application, the full state vector is 

 
(C.1) 

where   represents the robot pose variable at time  consisting both the spatial 

location and its heading or orientation 

 

(C.2) 

Meanwhile  gives the information of the -th landmark coordinate consisting both 

the coordinate respect to x-axes  and y-axes  for  

at time  

 

(C.3) 

Where  is the number of landmark available on the global coordinate system as the 

point-based map. Thus, Equation C.1 becomes 

 

(C.4) 
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Suppose every landmark is collected with a signature , the full state vector becomes 

 

(C.5) 

Equation (C.5) shows that the full state vector has dimension of  for N is the 

number of landmark available in the map. For this reason, the dimension of its 

covariance is  . Furthermore, as the common way in designing 

the feature-SLAM algorithm, the initial pose is assumed to be origin. It means that the 

robot pose has information of its coordinate  as well as it considers 

that there is no landmark seen at the time . Therefore, it is obvious to have an 

assumption that . Therefore, the initial setup of the 

full state vector is 
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(C.6) 

Considering that  is infinity when the robot pose does not see any landmark yet in 

the origin pose, it is clear to describe its covariance  as 

 

(C.7) 
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Prerequisites for Prediction Step in Optimal and Robust Filter  

Next, it assumes, the robot is moves from the initial pose  to the next coordinate 

 since the robot execute the control command . Then by involving the 

motion model and execute the control command, the next pose of robot is 

 

(C.8) 

Since the command has the same values of velocity, the another model of C.8 is  

 

(C.9) 

Compactly, it can be respectively modeled as 

 
(C.10) 

and 

 
(C.11) 
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For  is satisfying the dimension of . It is expressed as 

 

(C.12) 

Clearly, Equation (C.1) – Equation (C.12) are the foundation to apply the prediction 

state.  

 (C.13) 

Assuming that all the landmarks are static, and no affected by the control command. 

The motion model is expressed as follows 

 
(C.14) 

 
(C.15) 

It shows that only three variables in the old state are changed after including the motion 

model. Accordingly, the Jacobian matrices of  with respect to the state  and 

with respect to the control command  can respectively be calculated as  

 

C.16) 

 

(C.17) 

Referring to Equation (C.14) and Equation (C.15), it is clear to have 

 
(C.18) 

 
(C.19) 

 (C.20) 
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and applying both partial derivative of function  with respect to the stateas well as 

with respect to the control, two possible corresponding results classified based on 

similarity of right wheel and left wheel velocity are described as follows  

 
(C.21) 

It is noted that Equation (C.21) represents the partial derivative of  with respect to 

the state when , denoted by . Contrary, when , the notation 

becomes . It aims to differs the formulation based on the random movement caused 

by the control command. The randomness is because of the presence of unpredictable 

noise following the turn and move as the influence factor. From Equation (C.21) can 

seen that the entries on this matrix only involves the cause of coordinate changer. 

Therefore,  should not be much difference to  . In order to calculate it, let’s 

observe the cause of motion for  by knowledge that  when  (see 

Chapter 2). 

 

(C.22) 

Since , Equation (C.22) seems to return zero. It causes obtaining the partial 

derivative of  with respect to the state when  becomes unobservable. For 

this reason, all the expandable variables in Equation (C.22) is observed. It leads to the 

original formulation of . In which it is the variable representing the ratio of  and 

, . For this statement it is clear to have a definition that once ,  is 

infinity. Therefore, to calculate (C.22) as the effort find the entire in matrix , the 

limit approach is involved. It can be clearly derived as follows 

 
(C.23) 

Using l'hopital French mathematician, it is clear to get 
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(C.24) 

Similarly, by recalling   for , it 

gives the element of matrix which equation to . Therefore,  can be 

described as follows 

 
(C.25) 

Up to this point, the Jacobian matrix of  relative to the state has been calculated. 

Next, let’s calculate the partial derivative of f(.) with respect to the control. 

Unfortunately, by referring to the definition of finding the partial derivative of all the 

element is respected to  and , and there is no such visible  or . For this reason, 

all the derived equation from the motion model in Chapter 2 is recalled. They are 

chained as follows 

 (C.26) 

 (C.27) 

 (C.28) 

 (C.29) 

 (C.30) 

From Equation (C.26) – Equation (C.30), the following equation can be augmented. 

 (C.31) 

 
(C.32) 

 
(C.33) 

Now Equation (C.13) can be expanded as 
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(C.34) 

And referring to Equation (C.26) – Equation (C.33), all the element of the robot pose 

 are 

 
(C.35) 

 
(C.36) 

 (C.37) 

Once  then the partial derivative of  with respect to the 

control command can respectively be calculated as follows 

 
(C.38) 

 
(C.39) 

 
(C.40) 

 
(C.41) 

 
(C.42) 

 
(C.43) 

Note that Equation (C.38) – Equation (C.43) represent all the element on the partial 

derivative of  with respect to the control command, when . Obviously,  

is calculated. By the same way and referring to Equation (C.14), the chained 

formulation of all the element for  can also calculated as  

 
(C.44) 
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(C.45) 

 
(C.46) 

 
(C.47) 

 
(C.48) 

 
(C.49) 

Clearly, once Equation (C.12) is discussed, the first step in prediction stage is satisfied. 

Furthermore, the second step in prediction step is discussed and presented here. It is 

started by recalling the definition of covariance prediction step after the state is 

predicted. The form is 

 (C.50) 

By considering that the model of covariance is used to represent the uncertainty about 

its corresponding state vector, Equation (C.50) is completed with , which is the 

random effect caused by the turn and move factor. It is recalled as  

 
(C.51) 

where  and  are direct variable obtained based on the relative effect. Now, by 

assuming that the number of landmark , then it is clear to have the partial 

derivate with respect to the state as 

 

(C.52) 

In order to make Equation (5.1.52) to be compact formulation, it can also be modeled 

as 
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(C.53) 

By knowing that since ,  is the following form 

 
(C.54) 

Consequentially, the compact model of partial derivative with respect to the state  

step can further be calculated as 

 

(C.55) 

Note that  and   are non-zero elements calculated earlier under 
condition of  or , and  is now representing all the partial derivative 

of f(.) with respect to the control with  is the number landmark. The command  

and  only influence the first three variable on the state transition. It gives assumption 

that all the partial derivate related to the landmark coordinate are now zero. Then, by 

considering that the number of landmarks is , it is obvious to have 

 

(C.56) 

Next, by knowing that  is concerned as random effect caused by the turn and 

move factor, then  in both optimal and robust prediction stage becomes 
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(C.57) 

 

(C.58) 

Where  is extended  with a consideration of landmark coordinate. Meanwhile 

 non zeros matrix indicated by element  in Equation (5.1.58) is  

 

 

 

 

 

(C.59) 

Where  is  when  is calculated both relative to  and  . As 

can be seen, Equation (C.59) can also be modeled as 

 
(C.60) 

By knowing that since ,  is the following form  

 
(C.61) 

Consequentially, to maps from simple size of matrix to the compact one when the 
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number of landmarks is ,  ca n be calculated as follows 

 (C.62) 

Up to this point, all the completeness for the prediction step for both the optimal and 

robust filtering are satisfied.  

 

Prerequisites before Performing the Correction Step in either Optimal and Robust 

filtering  

Either optimal and robust filtering utilizes the measurement model as  

 
(C.63)  

Knowing that the measurement model is going to give the range and bearing of laser 

scanner from the robot frame relative to the landmark, hence the direct point-based 

observation is recalled in this Chapter. It is modeled as 

 

(C.64) 

Where 

 
(C.65) 

The measurement model of landmark is assumed to be noisy therefor it is clear to 

remodeled Equation (C.64) with an addition of random effect influencing both the range 

 and bearing . Supposing that  and  are considered as the additive noise, 

respectively. The formulation of measurement  is  

 
(C.66) 

For  refer to the sequence detected landmark in the map. Now, it is clear since all the 

variables used for calculating Equation (C.63) – Equation (C.66) is adopted from the 
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robot pose  and depend to the real landmark coordinate 

 from the fix map, then obviously the function relative to the 

measurement is 

 (C.67) 

Where  is the predicted state calculated in Equation (C.12) and  is 

additive noise relative to the measurement as mentioned in Equation (C.66). Next, 

similarly to the prediction step, the correction step for the optimal and robust also 

requires to compute the Jacobian matrix , in which the partial derivative of  with 

respect to the corresponding state . Knowing that from 

the prediction step, then it is obvious to have 

 
(C.68) 

Where correspondingly, all elements in Jacobian matrix  are presented as 

 

(C.69) 

 

(C.70) 
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(C.71) 

where Equation (C.69) – Equation (C.71) represent the partial derivative of the range 

with respect to the state. Next, the partial derivative of the bearing with respect to the 

state can also be calculated as 

 

(C.72) 

 

(C.73) 

 

(C.74) 

Now by supposing that , , and 

, all the compact elements of  can be presented 

with respect to Equation (C.69) – Equation (C.74). 
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(C.75) 

 
(C.76) 

 
(C.77) 

By following the same way as finding the compact formulation of the partial derivative 

of h(.) with respect to state relative to the range, for the bearing one can also be 

presented as 

 
(C.78) 

 
(C.79) 

 
(C.80) 

Accordingly, the Jacobian matrix of measurement is 

 
(C.81) 

Note that Equation (C.63) – Equation (C.81) are considered when the model of 

measurement only consists the range  and bearing . Therefore, if the signature is 

always included as the last element for each landmark measurement, it is clear to 

reconstruct the model of measurement  as  

 
(C.82) 

For  represent the -th landmark and  is the correspondence between the 

expected measurement and the landmark on the map. Consequently, when the 

dimension of z_i is increased, the Jacobian matrix H is sufficiently increased as well. 

The formulation of H can be calculated by taking the partial derivative of h(.) with 

respect to the full state vector of  including the robot pose  and landmark . 
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(C.83) 

Once the model of Jacobian matrix is known as Equation (5.1.68), according to 

Equation (C.69) – Equation (C.81) the following element are additionally calculated. 

 

(C.84) 

 

(C.85) 

 
(C.86) 

Equation (C.84) – Equation (C.86) represent the rest element for the first row in H. 

Similarly, the rest elements for the second row are calculated as 

 

(C.87) 

 

(C.88) 
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(C.89) 

Finally, for the last row, which is the partial derivative of  with respect to  , all 

the elements are equal to zero except the last one which is 1. Therefore  

 
(C.90) 

 
(C.91) 

 
(C.92) 

 
(C.93) 

 
(C.94) 

 
(C.95) 

By applying , , and , 

we have 

 
(C.96) 

 
(C.97) 

 
(C.98) 

 
(C.99) 

 
(C.100) 

 
(C.101) 

Then, the Jacobian matrix  for case when is included in 

measurement model becomes 
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(C.102) 

As the last formulation, in order to maps the low-dimensional of H into a matrix with 

dimension , the following matrix is defined and further involved. 

 

(C.103) 

Note, that from Equation (C.83) – Equation (C.103), the construction of   

 
(C.104) 

For  represents the landmark  on the map correspondences with  as the expected 

measurement given the full state vector . For this reason, in order to initialize the 

expected landmark based on the direct point-based observation into the map, the inverse 

point-based observation is involved, which is  

 
(C.105) 
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